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Generalized Nonconvex Hyperspectral Anomaly Detection via Background
Representation Learning with Dictionary Constraint\ast 

Quan Yu\dagger and Minru Bai\ddagger 

Abstract. Anomaly detection in the hyperspectral images, which aims to separate interesting sparse anomalies
from backgrounds, is a significant topic in remote sensing. In this paper, we propose a generalized
nonconvex background representation learning with dictionary constraint (GNBRL) model for hy-
perspectral anomaly detection. Unlike existing methods that use a specific nonconvex function for
a low rank term, GNBRL uses a class of nonconvex functions for both low rank and sparse terms
simultaneously, which can better capture the low rank structure of the background and the sparsity
of the anomaly. In addition, GNBRL simultaneously learns the dictionary and anomaly tensor in
a unified framework by imposing a three-dimensional correlated total variation constraint on the
dictionary tensor to enhance the quality of representation. An extrapolated linearized alternating
direction method of multipliers (ELADMM) algorithm is then developed to solve the proposed GN-
BRL model. Finally, a novel coarse to fine two-stage framework is proposed to enhance the GNBRL
model by exploiting the nonlocal similarity of the hyperspectral data. Theoretically, we establish
an error bound for the GNBRL model and show that this error bound can be superior to those
of similar models based on Tucker rank. We prove that the sequence generated by the proposed
ELADMM algorithm converges to a Karush--Kuhn--Tucker point of the GNBRL model. This is a
challenging task due to the nonconvexity of the objective function. Experiments on hyperspectral
image datasets demonstrate that our proposed method outperforms several state-of-the-art methods
in terms of detection accuracy.
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stage framework, error bound
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1. Introduction. Hyperspectral images (HSIs) are a powerful tool for detecting and
locating ground objects and providing spatial positioning and structural information [3]. They
have been successfully applied in a variety of fields, including classification [18, 30, 35], image
fusion [6], and target detection [50, 52, 65]. In recent years, hyperspectral anomaly detection
(HAD) has attracted considerable interest due to its significance for public safety and defense
[19, 20, 58]. The goal of HAD is to identify and separate anomalous objects from the back-
ground by exploring the differences between anomalies and their surroundings. To tackle this
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918 QUAN YU AND MINRU BAI

problem, researchers have proposed various methods, such as statistic based methods, deep
learning based methods, low rank matrix/tensor decomposition based methods, and low rank
matrix/tensor representation based methods.

A common statistic based algorithm is the Reed--Xiaoli (RX) detector [40]. It calculates
the mean vector and covariance matrix of the samples from the HSI to obtain the Mahalanobis
distance between testing pixels and their surrounding background. One limitation of RX is
that it relies on the assumption that the background can be characterized by a single normal
distribution, which is seldom the case for real hyperspectral applications [20]. Therefore,
various modified RX methods have been proposed, such as weighted-RX [15], kernel-RX [27],
segmented-RX [33], and subspace-RX [42]. However, these methods rely on manually designed
distribution forms, which may not capture the complex and diverse background characteristics.
To overcome this limitation, deep learning based methods have been adopted for HAD tasks,
which use deep networks to mine and interpret higher order information contained in the
HSI. Deep learning based methods can be categorized into unsupervised, supervised, or self-
supervised learning. Unsupervised methods learn background representations or anomalies
using autoencoder [63] or generative adversarial networks [21]. Supervised methods use a
convolutional neural network to extract features and classify anomalies using labeled data
[29]. Self-supervised methods generate pseudolabels by predicting some tasks without labeled
data. For example, BS3LNet [13] and PDBSNet [47] predicted blind-spot pixels in HSI and
used them to train the model.

To separate the background and anomaly, some researchers have used low rank matrix
decomposition based methods that have shown good potential. Sun et al. [45] and Zhang
et al. [62] used the robust principal component analysis (RPCA) framework to decompose
the HSI data into low rank and sparse parts. But they still failed to effectively distinguish
weak anomalies from noise. Recently, matrix representation based methods have been success-
fully applied in HAD. These methods construct a fixed background dictionary using different
techniques, and then formulate the target detection model using this dictionary. For example,
Xu et al. [53] and Cheng and Wang [9] obtained the background dictionary by applying the
k-means clustering method, while Zhuang et al. [65] used the singular value decomposition
(SVD) method to get it.

HSIs are inherently considered as third order tensors, where the height and width modes
represent the spatial characteristics and the spectral mode represents the spectral character-
istics. Compared with matrix based HAD methods, tensor based HAD methods treat the
original HSI data as a whole, and preserve the spatial structure. In recent years, tensor based
methods have attracted more attention in HAD. Chen, Yang, and Wang [8] and Li et al. [28]
proposed a tensor RPCA based method to separate a principal component part and a resid-
ual part based on tensor decomposition. Wang et al. [49] developed a tensor representation
based method, which first constructed a fixed background dictionary using the tensor RPCA
method, and then formulated the target detection model using this dictionary.

In representation based methods, the dictionary plays a critical role. There are three main
methods of dictionary construction in current research: SVD [65], k-means clustering [9, 53],
and (tensor) RPCA [49]. A drawback of these methods is that they depend on a prebuilt
dictionary that compromises the quality of representation. Therefore, we need to explore
the features of the dictionary so that we can perform dictionary construction and anomaly

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

2/
24

 to
 1

24
.2

33
.1

.1
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



HYPERSPECTRAL ANOMALY DETECTION 919

0 2000 4000 6000 8000 10000 12000 14000

Band number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
in

g
u

la
r 

v
a

lu
e

(a) SVD [65]

0 500 1000 1500

Band number

0

5

10

15

20

25

30

S
in

g
u

la
r 

v
a

lu
e

(b) k-means clustering [9, 53]
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(c) RPCA [49]

Figure 1. Singular values of dictionary tensor \scrA and gradient tensor \nabla u\scrA , u\in [3]. The definition of \nabla u\scrA 
is given in (3.3).

detection simultaneously. In this way, we can update the dictionary in real time at each step
to achieve the best results. With the development of low rank recovery theory, Peng et al. [37]
used the three-dimensional correlated total variation (3DCTV) regularization to exploit the
structural characteristics of the HSI data. Based on t-SVD [25], we show the singular values
of the dictionary tensor and those of the gradient tensor obtained by a differential operator in
Figure 1. From Figure 1, we can see that both the dictionary tensors generated by k-means
clustering and (tensor) RPCA have a low rank structure, and gradient tensors are more low
rank than the original dictionary tensor. Therefore, we use the low rank property of gradient
tensors to describe the dictionary tensor.

One common challenge is that almost all of matrix/tensor based HAD methods use the
nuclear norm and l1-norm to investigate the low rank and sparse characteristic. For example,
the studies in [9, 53] exploited the convex matrix nuclear norm and l1-norm while those of
[44, 48] used the convex tensor nuclear norm and l1-norm. However, the nuclear norm is essen-
tially the l1-norm of all singular values, which is known to yield biased estimators and cannot
achieve the best estimation performance. To address this issue, inspired by the significant
performance of nonconvex regularization in vector [1, 36], matrix [56], and tensor problems
[55, 64], in this paper, we propose a generalized nonconvex tensor approximation of the ten-
sor nuclear norm (TNN) [43] and l1-norm. Unlike most existing nonconvex HAD methods
[28, 49], which only use nonconvex approximation on low rank, we apply nonconvex approx-
imation to both low rank and sparsity. In addition, most existing nonconvex HAD methods
were solved case-by-case. We also provide a general solver with a convergence guarantee under
mild conditions.

Such two concerns are not well solved in existing tensor representation based methods. In
this paper, we propose a novel generalized nonconvex background representation learning with
dictionary constraint (GNBRL) model. GNBRL assumes that the background part is global
low rank. However, this may lead to a trade-off between restoring the original low rank parts
and neglecting the potentially high rank parts. To overcome this limitation, we develop a novel
coarse to fine two-stage (CF2) framework for GNBRL. In the first stage, GNBRL is applied
to the whole HSI to obtain a coarse result and detect most anomalies. In the second stage,
the HSI is divided into smaller patches based on block matching three dimensional (BM3D)
[10, 11] and each patch is solved independently using GNBRL. The restored patches then
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920 QUAN YU AND MINRU BAI

replace their counterparts in the coarse result if they satisfy a certain metric. We emphasize
that this divide-and-conquer strategy can improve the performance of existing HAD methods.

Compared with existing matrix and tensor based methods, the main contributions of this
study are summarized below.

(1) We propose a GNBRL model that simultaneously learns the dictionary and anomaly
tensor in a unified framework, which can enhance the quality of representation. By
employing a class of generalized nonconvex functions as the TNN and l1-norm approx-
imations, we can capture the low rank structure of the background and the sparsity
of the anomaly more accurately.

(2) We provide an error bound of the anomaly tensor recovered by the GNBRL model.
Moreover, we develop an extrapolated linearized alternating direction method of multi-
pliers (ELADMM) algorithm to solve the GNBRL model, and the convergence analysis
is also given. This is a challenging task due to the nonconvexity of the objective func-
tion. These theoretical results are rarely given by previous HAD works.

(3) We propose a CF2 framework for GNBRL, which can greatly improve its performance
by first obtaining the coarse anomaly tensor and then refining the anomaly tensor.

The remainder of this paper is organized as follows. First, in section 2, some notations and
preliminaries of tensors are introduced. Next, in section 3, a GNBRL model is presented and
its worst-case error bound is established. In addition, we propose a CF2 framework to improve
the proposed GNBRL model in this section. After that, in section 4, an ELADMM algorithm
is proposed to solve the GNBRL model and give the convergence analysis. Subsequently, in
section 5, extensive numerical experiments are reported to verify the superior performance of
the GNBRL and CF2-GNBRL model. Finally, the concluding remarks are given in section 6.

2. Preliminary knowledge on tensor. Before proceeding, we first present some notations
here. For a positive integer n, [n] := \{ 1,2, . . . , n\} . Scalars, vectors, and matrices are denoted
as lowercase letters (a), boldface lowercase letters (\bfita ), and uppercase letters (A), respectively.
Third order tensors are denoted as calligraphic letters (\scrA ), and the set of all the third order
real tensors and complex tensors are denoted as \BbbR n1\times n2\times n3 and \BbbC n1\times n2\times n3 , respectively. For a
third order tensor \scrX \in \BbbR n1\times n2\times n3 , we use the notations X(k), k \in [n3] to denote its kth frontal
slice. To avoid confusion, we use \scrX ijk and \scrX (i, j, k) to denote the (i, j, k)th entries of \scrX . The
inner product of two tensors \scrX , \scrY \in \BbbR n1\times n2\times n3 is the sum of products of their entries, i.e.,
\langle \scrX ,\scrY \rangle =

\sum n1

i=1

\sum n2

j=1

\sum n3

k=1\scrX ijk\scrY ijk. We use \=\scrX to denote the discrete Fourier transformation
(DFT) along the third dimension of \scrX , which can be obtained by MATLAB command ``fft"",
that is, \=\scrX =fft(\scrX , [ ],3), and the inverse operation is \scrX = ifft( \=\scrX , [ ],3).

By defining the block circulant matrix bcirc(\scrX ) as

bcirc(\scrX ) =

\left[     
X(1) X(n3) \cdot \cdot \cdot X(2)

X(2) X(1) \cdot \cdot \cdot X(3)

...
...

. . .
...

X(n3) X(n3 - 1) \cdot \cdot \cdot X(1)

\right]     ,
we can then introduce the tensor spectral norm and the t-product between two third order
tensors.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYPERSPECTRAL ANOMALY DETECTION 921

Definition 2.1 (tensor spectral norm [31]). The tensor spectral norm of \scrX \in \BbbR n1\times n2\times n3 is
defined as \| \scrX \| = \| bcirc(\scrX )\| .

Definition 2.2 (t-product [25]). The t-product between \scrX \in \BbbR n1\times n2\times n3 and \scrY \in \BbbR n2\times n4\times n3

is defined as

\scrX \ast \scrY = fold (bcirc(\scrX ) \cdot unfold (\scrY ))\in \BbbR n1\times n4\times n3 ,

where unfold(\scrY ) = [Y (1);Y (2); . . . ;Y (n3)]\in \BbbR n2n3\times n4 and its inverse operator fold is defined as
fold(unfold(\scrY )) =\scrY .

Based on the definition of the t-product, we will further introduce a new tensor decompo-
sition framework, t-SVD.

Definition 2.3 (t-SVD [25]). For any given tensor \scrX \in \BbbR n1\times n2\times n3, it can be factorized as

\scrX = \scrU \ast \scrS \ast \scrV H ,

where \scrU \in \BbbR n1\times n1\times n3 ,\scrV \in \BbbR n2\times n2\times n3 are orthogonal tensors and \scrS \in \BbbR n1\times n2\times n3 is an f-diagonal
tensor.

Some related concepts, such as the f-diagonal tensor, the conjugate transpose, and so on,
are explained in Appendix A.

Definition 2.4 (TNN [43]). The TNN of a tensor \scrX \in \BbbR n1\times n2\times n3 is the sum of singular

values of all front slices of \=\scrX , that is, \| \scrX \| TNN = 1
n3

\sum n3

k=1

\sum \mathrm{m}\mathrm{i}\mathrm{n}\{ n1,n2\} 
i=1 \sigma i( \=X

(k)).

3. A GNBRL model for HAD. In this section, we first present a GNBRL model for HAD,
and then propose a CF2 framework for GNBRL. Finally, an error bound analysis of GNBRL
is given.

3.1. Generalized nonconvex model with dictionary constraint. Recent advances have
shown that tensor representation based methods for HAD outperform matrix representation
based methods. This is because HSI data are inherently a third order tensor, and matrix
representation based methods destroy the intrinsic HSI tensor structure. The seminal works
in this area are [17] and [49], both of which follow the general model

min
\scrL ,\scrS 

rank (\scrL ) + \lambda \| \scrS \| \ell F,0 s.t. \scrX =\scrA \ast \scrL + \scrS ,(3.1)

where \scrA \ast \scrL is the background part, \scrA denotes the background dictionary, \scrL is the corre-
sponding representation coefficients, and S represents the sparse part related to anomalies.
The tensor group sparsity \ell F,0-norm is defined as \| \scrX \| \ell F,0 =

\sum n1

i=1

\sum n2

j=1 \| \scrX (i, j, :)\| 0F (adopting

the convenience that 00 = 0).
Differently from model (3.1) which simply adopts a prebuilt dictionary \scrA , we perform

dictionary construction and anomaly detection simultaneously to learn a more comprehensive
dictionary for background reconstruction. The low rank structure of the dictionary tensors is
evident from Figure 1 in section 1. The gradient tensors, which capture the variations of the
dictionary tensors, have an even lower rank. We exploit this property to model the dictionary
tensors using the gradient tensors, and it can be modeled as follows,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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922 QUAN YU AND MINRU BAI

min
\scrA ,\scrL ,\scrS 

3\sum 
u=1

\alpha urank (\nabla u\scrA ) + \lambda 1rank (\scrL ) + \lambda 2 \| \scrS \| \ell F,0 s.t. \scrX =\scrA \ast \scrL + \scrS ,(3.2)

where \nabla 1\scrA , \nabla 2\scrA , \nabla 3\scrA denote the first order forward finite-difference operators along the
vertical, horizontal, and spectral directions, respectively. Here, for the (i, j, k)th entry, each
forward finite-difference operator is defined by\left\{     

\nabla 1\scrA (i, :, :) =\scrA (i+ 1, :, :) - \scrA (i, :, :), i\in [n1  - 1],

\nabla 2\scrA (:, j, :) =\scrA (:, j + 1, :) - \scrA (:, j, :), j \in [n2  - 1],

\nabla 3\scrA (:, :, k) =\scrA (:, :, k+ 1) - \scrA (:, :, k), k \in [n3  - 1].

(3.3)

Here, we use zero paddings for \scrA before applying the differential operation on it, i.e., \nabla 1\scrA (n1, :
, :) = 0, \nabla 2\scrA (:, n2, :) = 0, \nabla 3\scrA (:, :, n3) = 0, which keep the size of \nabla u\scrA the same as \scrA and
makes calculation convenient in the subsequent operations.

Differently from most existing nonconvex HAD methods [17, 28, 49] that only use non-
convex approximation for low rank, we apply it to both low rank and sparsity. Moreover, we
pursue a general surrogate for approximating low rank and sparsity, i.e.,

\| \scrX \| \psi =
1

n3

n3\sum 
k=1

\mathrm{m}\mathrm{i}\mathrm{n}\{ n1,n2\} \sum 
i=1

\psi 
\Bigl( 
\sigma i

\Bigl( 
\=X(k)

\Bigr) \Bigr) 
,

\| \scrX \| \ell \psi F,1 =
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrX (i, j, :)\| F ) =
n1\sum 
i=1

n2\sum 
j=1

\psi 

\left(  \Biggl( n3\sum 
k=1

\scrX (i, j, k)2

\Biggr) 1/2
\right)  ,

(3.4)

where \psi (\cdot ) :\BbbR + \rightarrow \BbbR + is a function. This allows us to better capture the low rank structure of
the background and the sparsity of the anomaly. Indeed, when \psi (x) = x, \| \scrX \| \psi and \| \scrX \| \ell \psi F,1
would degrade into \| \scrX \| TNN and \| \scrX \| \ell F,1 , respectively. By replacing the rank(\cdot ) and \| \cdot \| \ell F,0
with (3.4), our model is formulated as

min
\scrA ,\scrL ,\scrS 

3\sum 
u=1

\alpha u \| \nabla u\scrA \| \psi + \lambda 1 \| \scrL \| \psi + \lambda 2 \| \scrS \| \ell \psi F,1 s.t. \scrX =\scrA \ast \scrL + \scrS .(3.5)

If there is no special explanation, we suppose that Assumption 3.1 holds throughout the paper.

Assumption 3.1. The function \psi (\cdot ) : \BbbR + \rightarrow \BbbR + satisfies: \psi is continuous, nondecreasing,
and concave with \psi (0) = 0.

Theorem 3.2. Most functions satisfy Assumption 3.1. We list five of them as follows. Here
we only consider the case x> 0.

(1) L1: \psi L1(x) = x [46];
(2) Lp: \psi \mathrm{L}\mathrm{p}(x) = xp, p\in (0,1) [7];

(3) MCP: \psi \mathrm{M}\mathrm{C}\mathrm{P}(x) =

\Biggl\{ 
x - x2

2\alpha , 0\leq x\leq \alpha ,
\alpha 
2 , x > \alpha 

with \alpha > 0 [60];

(4) Logarithm: \psi \mathrm{L}\mathrm{o}\mathrm{g}(x) = log(x\theta + 1) with \theta > 0 [12, 14];

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYPERSPECTRAL ANOMALY DETECTION 923

(5) Capped folded functions:
-- Capped L1: \psi CapL1(x) =min\{ 1, xv \} [1, 36, 56];
-- Capped Lp :\psi CapLp(x) =min\{ 1, xpvp \} , p\in (0,1) [36];
-- Capped MCP: \psi CapMCP (x) =min\{ 1, 2\alpha 

\nu (2\alpha  - \nu )\psi 
\mathrm{M}\mathrm{C}\mathrm{P}(x)\} , 0< \nu <\alpha [36];

-- Capped logarithm: \psi CapLog(x) =min\{ 1, 1
\psi \mathrm{L}\mathrm{o}\mathrm{g}(v)\psi 

\mathrm{L}\mathrm{o}\mathrm{g}(x)\} .
The proof of Theorem 3.2 is straightforward, so we omit it here. For the special forms of

\psi given by Theorem 3.2, their proximal mappings often have analytical expressions, which we
summarize in Appendix B.

3.2. CF2 framework for GNBRL. GNBRL decomposes the HSI into a low rank compo-
nent that represents the background and a sparse component that represents the anomalies.
However, this method assumes that the background has a global low rank structure, which
may ignore some complex objects in the scene and reduce the detection accuracy. To remove
this limitation, we develop a CF2 framework for GNBRL (CF2-GNBRL). Here we present the
details of the CF2 strategy, which consist of a coarse stage and a fine stage.

1) Coarse stage: In the coarse stage, a coarse anomaly \~\scrS is obtained by applying the
GNBRL model to the whole HSI.

2) Fine stage: We first divide the whole HSI into N patches of third order subtensors
according to BM3D [10, 11]. Then we apply the GNBRL model to each subtensor
to obtain \^\scrS 1

patch,
\^\scrS 2
patch, . . . ,

\^\scrS Npatch. Next, we divide \~\scrS into N patches following the

partitions employed in the current fine stage to obtain \~\scrS 1
patch,

\~\scrS 2
patch, . . . ,

\~\scrS Npatch. Finally,
we obtain \scrS  \star by

\scrS  \star ,lpatch =

\left\{   
\~\scrS lpatchif gap

\Bigl( 
\~\scrS lpatch, \^\scrS lpatch

\Bigr) 
<\varrho ,

\^\scrS lpatchif gap
\Bigl( 
\~\scrS lpatch, \^\scrS lpatch

\Bigr) 
\geq \varrho ,

(3.6)

where \varrho is a given parameter and

gap
\Bigl( 
\~\scrS lpatch, \^\scrS lpatch

\Bigr) 
=

\bigm\| \bigm\| \bigm\| \~\scrS lpatch  - \^\scrS lpatch
\bigm\| \bigm\| \bigm\| 
F\bigm\| \bigm\| \bigm\| \~\scrS lpatch\bigm\| \bigm\| \bigm\| 

F

.

Remark 3.3. Similarly to [65], we adopt the BM3D method for tensor patch dividing
in the fine stage of the CF2 framework, as it is very fast. We do not explore other tensor
patch dividing methods that might improve the performance of the proposed CF2 framework,
because we prioritize the trade-off between the detection accuracy and speed. Figure 8 shows
that the CF2-GNBRL method has a fast numerical convergence speed and its convergence
can be numerically guaranteed.

Remark 3.4. Instead of applying the nonlocal prior directly on the background [16], we
use (3.6) to balance between the potentially low rank and high rank parts of the background.
This scheme is motivated by the fact that the background obtained in the coarse stage reflects
the overall structure of the underlying true situation. If the gap between the patch \^\scrS lpatch
obtained by the fine stage and the corresponding patch in \~\scrS is small, it means that the
corresponding backgrounds have a large gap, and then \^\scrS lpatch has a high risk of deviating from

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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924 QUAN YU AND MINRU BAI

the true value. Therefore, we only take \^\scrS lpatch as the final value when the gap between \~\scrS lpatch
and \^\scrS lpatch is large, otherwise we take \~\scrS lpatch as the final value.

3.3. Error bound of GNBRL. In this subsection, we establish a worst-case error bound
to measure the average errors of the recovered anomaly tensor in the worst case. The concept
of sparse eigenvalues of a matrix was introduced by Bickel, Ritov, and Tsybakov [2] and
Meinshausen and Yu [34] to study the perfect recovery property. Similarly to the restricted
eigenvalue condition (REC) of a matrix [2, 34], we introduce the notion of the \psi -restricted
tensor eigenvalue condition (\psi -RTEC).

Definition 3.5. The tensor \scrA is said to satisfy the \psi -RTEC relative to s (\psi -RTEC(s)) if

\zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s) = min
\| \scrL \| 

\psi 
\leq 2s

\| \scrA \ast \scrL \| F
\| \scrL \| F

> 0.(3.7)

It is well known that the REC is a sufficient condition for the uniqueness of the sparse
solution of the linear system A\bfitx = \bfitb . In order to improve the understanding of the unique
properties of the structural low rank solutions, we introduce the concept of the uniquely
solvable-type properties of the tensor \scrA .

Definition 3.6. The tensor \scrA is said to satisfy the uniquely solvable property relative to s
\psi -low rank (\psi -USP(s)) if the linear inverse problem \scrA \ast \scrL = \scrB has a unique \psi -USP solution
satisfying \| \scrL \| \psi \leq s for any \scrB :=\scrA \ast \scrZ with \| \scrZ \| \psi \leq s.

The following lemma indicates that the \psi -RTEC(s) is equivalent to the \psi -USP(s) of \scrA .

Lemma 3.7. The tensor \scrA satisfies \psi -RTEC(s) if and only if it satisfies \psi -USP(s).

Proof. \Rightarrow : Suppose that \scrA satisfies \psi -RTEC(s). Assume on contradiction that the \psi -
USP(s) is not satisfied, that is, there exists \scrB such that there are two distinct tensors \^\scrL and
\~\scrL such that \scrA \ast \^\scrL =\scrA \ast \~\scrL = \scrB and \| \^\scrL \| \psi = \| \~\scrL \| \psi \leq s. Then \scrL := \^\scrL  - \~\scrL is a tensor such that
\scrA \ast \scrL = 0 and \| \scrL \| \psi \leq 2s, and thus \zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s) = 0, which is in contradiction with (3.7). Thus,
\scrA satisfies \psi -USP(s).

\Leftarrow : Suppose that \scrA satisfies \psi -USP(s). Assume in contradiction that the \psi -RTEC(s) is
not satisfied, that is, \zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s) = 0. Then by (3.7), there exists \scrL with \| \scrL \| \psi \leq 2s such that
\scrA \ast \scrL = 0. Let \scrB := \scrA \ast \scrL , then it is easy to check that \scrA \ast (\scrL /N) = \scrA \ast (\scrL /2N) = 0 and
\| \scrL /2N\| \psi \leq \| \scrL /N\| \psi \leq s when N is sufficiently large. This contradicts the \psi -USP(s). Thus,
\scrA satisfies \psi -RTEC(s).

Remark 3.8. If the \psi -RTEC(s) is not satisfied, one has no hope of recovering the ground
truth s \psi -USP solution from the linear system \scrA \ast \scrL =\scrB .

In the following, we present some properties of the nonconvex function \psi , which are
essential for the error bound analysis.

Theorem 3.9. Suppose that \scrB \in \BbbR n1\times n2\times n3 and \scrS \in \BbbR n1\times n2\times n3 are two arbitrary tensors.
Then, the following properties hold:

1. \| \scrB  - \scrS \| \psi \geq \| \scrB \| \psi  - \| \scrS \| \psi ;
2. \| \scrB  - \scrS \| \ell \psi F,1 \leq \| \scrB \| \ell \psi F,1 + \| \scrS \| \ell \psi F,1;
3. \psi (\| \scrB \| F )\leq \| \scrB \| \ell \psi F,1 \leq \| \scrB \| \psi ,1, where \| \scrB \| \psi ,1 :=

\sum n1

i=1

\sum n2

j=1

\sum n3

k=1\psi (| \scrB ijk| ).
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HYPERSPECTRAL ANOMALY DETECTION 925

The proof of Theorem 3.9 is given in Appendix C. Next, we develop an error bound for
minimization problem (3.5).

Theorem 3.10. Let (\scrL \natural ,\scrS \natural ) be the pair of true low rank and sparse tensors, and (\scrA  \star ,\scrL  \star ,\scrS  \star )
be an optimal solution to the optimization problem (3.5). Assume that \scrA  \star satisfies \psi -RTEC(s),
\scrX =\scrA  \star \ast \scrL \natural + \scrS \natural , \| \scrL \natural \| \psi \leq \| \scrL  \star \| \psi := s, and \lambda 2 >\lambda 1r\vargamma 

\psi 
r,s with r=min\{ n1, n2\} . Then we have

\psi 
\Bigl( \bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
F

\Bigr) 
\leq 
\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq 
2\lambda 2

\bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| 
\ell \psi F,1

\lambda 2  - \lambda 1r\vargamma 
\psi 
r,s

,(3.8)

where \vargamma \psi r,s is a constant that depends on r, s, \psi .

Proof. By optimality, we have

3\sum 
u=1

\alpha u \| \nabla u\scrA  \star \| \psi + \lambda 1 \| \scrL  \star \| \psi + \lambda 2 \| \scrS  \star \| \ell \psi F,1

\leq 
3\sum 

u=1

\alpha u \| \nabla u\scrA  \star \| \psi + \lambda 1

\bigm\| \bigm\| \bigm\| \scrL \natural \bigm\| \bigm\| \bigm\| 
\psi 
+ \lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

.

(3.9)

Thus,

\lambda 2 \| \scrS  \star \| \ell \psi F,1 \leq \lambda 1

\biggl( \bigm\| \bigm\| \bigm\| \scrL \natural \bigm\| \bigm\| \bigm\| 
\psi 
 - \| \scrL  \star \| \psi 

\biggr) 
+ \lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq \lambda 1

\bigm\| \bigm\| \bigm\| \scrL \natural  - \scrL  \star 
\bigm\| \bigm\| \bigm\| 
\psi 
+ \lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

,(3.10)

where the last inequality follows from Theorem 3.9.1. By Theorem 3.9.2, we have

\lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq \lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

+ \lambda 2 \| \scrS  \star \| \ell \psi F,1 .(3.11)

Combining (3.10) and (3.11), we have

\lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq \lambda 1

\bigm\| \bigm\| \bigm\| \scrL \natural  - \scrL  \star 
\bigm\| \bigm\| \bigm\| 
\psi 
+ 2\lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

.(3.12)

Let \scrL \natural  - \scrL  \star := \scrU \ast \scrD \ast \scrV H and \sigma lk := \sigma l( \=D
(k)). By Assumption 3.1, one has

\bigm\| \bigm\| \bigm\| \scrL \natural  - \scrL  \star 
\bigm\| \bigm\| \bigm\| 
\psi 
=

n3\sum 
k=1

r\sum 
l=1

1

n3
\psi 
\Bigl( 
\sigma lk

\Bigr) 
\leq r\psi 

\Biggl( 
1

n3r

n3\sum 
k=1

r\sum 
l=1

\sigma lk

\Biggr) 
\leq r\psi 

\left(  \sqrt{}    1

n3r

n3\sum 
k=1

r\sum 
l=1

\bigl( 
\sigma lk
\bigr) 2\right)  

= r\psi 
\Bigl( 
r - 

1

2 \| \scrD \| F
\Bigr) 
= r\psi 

\Bigl( 
r - 

1

2

\bigm\| \bigm\| \bigm\| \scrL \natural  - \scrL  \star 
\bigm\| \bigm\| \bigm\| 
F

\Bigr) 
\leq r\psi 

\biggl( 
1\surd 

r\zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s)

\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
F

\biggr) 
\leq r\vargamma \psi r,s\psi 

\Bigl( \bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
F

\Bigr) 
,

(3.13)

where the first inequality follows from the concavity of \psi and Jensen's inequality, and the
second inequality follows from the nondecreasing property of \psi and the mean inequality chain.
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926 QUAN YU AND MINRU BAI

The third inequality uses \| \scrS \natural  - \scrS  \star \| F = \| \scrA  \star \ast (\scrL \natural  - \scrL  \star )\| F \geq \zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s)\| \scrL \natural  - \scrL  \star \| F , \vargamma \psi r,s is a
constant related to r, s, \psi . Summing up (3.12) and (3.13), we notice that

\lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq \lambda 1r\vargamma 
\psi 
r,s\psi 

\Bigl( \bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
F

\Bigr) 
+ 2\lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq \lambda 1r\vargamma 
\psi 
r,s

\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
\ell \psi F,1

+ 2\lambda 2

\bigm\| \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \bigm\| 
\ell \psi F,1

,

where the last inequality uses Theorem 3.9.3. Provided that \lambda 2 >\lambda 1r\vargamma 
\psi 
r,s, we get

\psi 
\Bigl( \bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
F

\Bigr) 
\leq 
\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
\ell \psi F,1

\leq 
2\lambda 2

\bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| 
\ell \psi F,1

\lambda 2  - \lambda 1r\vargamma 
\psi 
r,s

.(3.14)

Remark 3.11. When the function \psi is given, \vargamma \psi r,s is fixed. For example, when the function

\psi takes the values of L1 and Lp, \vargamma \psi r,s is equal to
1\surd 

r\zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s)
and 1\surd 

rp\zeta p\mathrm{m}\mathrm{i}\mathrm{n}(2s)
, respectively. From

the definition of \zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s) in (3.7), we can see that a smaller value of s, which corresponds to
a lower rank of \scrL  \star , leads to a larger value of \zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s). This means a smaller value of \vargamma \psi r,s, as

\zeta \mathrm{m}\mathrm{i}\mathrm{n}(2s) and \vargamma \psi r,s are inversely proportional. By Theorem 3.10, this demonstrates a smaller
value of \| \scrS \natural  - \scrS  \star \| F . The above analysis implies that the lower the rank of the background,
the better the recovery effect.

Corollary 3.12. When \psi (x) = xp, the average of the entries of the sparse component \scrS \natural is
bounded by T and the cardinality of the support \scrS \natural is bounded by m. By properly choosing \lambda 1
and \lambda 2, we have \bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
F
\leq 

p\surd 
4mT.

Proof. When \psi (x) = xp, one has\left(  \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| \ell \psi F,1
m

\right)  1

p

\leq 

\Biggl( \bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| 
\psi ,1

m

\Biggr) 1

p

\leq 
\bigm\| \bigm\| \scrS \natural \bigm\| \bigm\| 

1

m
\leq T,(3.15)

where the first inequality follows from Theorem 3.9.3, and the second inequality is because of
the generalized power-mean inequality [5, Theorem 3]. Thus, (3.14) becomes

\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| \bigm\| 
F
\leq 

\Biggl( 
2\lambda 2mT

p

\lambda 2  - \lambda 1r\vargamma 
\psi 
r,s

\Biggr) 1/p

.(3.16)

Take \lambda 2 = 2\lambda 1r\vargamma 
\psi 
r,s, we have

\bigm\| \bigm\| \scrS \natural  - \scrS  \star 
\bigm\| \bigm\| 
F
\leq 

p\surd 
4mT .

Remark 3.13. Here we obtain the error bound similar to those in [61]. That is, for very
sparse anomaly tensors, as long as T is bounded, then \| \scrS \natural  - \scrS  \star \| F /M with M = n1n2n3 is
rather small, indicating good recovery.
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HYPERSPECTRAL ANOMALY DETECTION 927

Although the error bound we obtain is very similar to that of [61], we show that in certain
cases we get smaller error bounds.

Remark 3.14. In [61], if the transformation \Gamma satisfies \scrX \circ \Gamma =\scrX , then they derive an error
bound based on Tucker rank as follows:\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
F
\leq 

\Biggl( 
2\lambda 2mT

p

\lambda 2  - \lambda 1
\sum 3

u=1\alpha un
1 - p

2
u

\Biggr) 1/p

:= errortucker.(3.17)

In our model, if the dictionary \scrA satisfies \scrA = \scrI , from Theorem 3.10, we obtain the error
bound with \psi (x) = xp as follows:\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 
F
\leq 
\bigm\| \bigm\| \bigm\| \scrS \natural  - \scrS  \star 

\bigm\| \bigm\| \bigm\| 1/p
\ell \psi F,1

\leq 
\biggl( 

2\lambda 2mT
p

\lambda 2  - \lambda 1r
1 - p

2

\biggr) 1/p

:= errortubal.(3.18)

Considering the majority of data sets used in HSIs, where the size satisfies the condition

n3 > min\{ n1, n2\} , it can be derived that r1 - 
p

2 <
\sum 3

u=1\alpha un
1 - p

2
u . This implies that our error

bound is smaller than that in [61], i.e., errortubal < errortucker.

4. ELADMM algorithm and convergence analysis. In this section, we propose an
ELADMM algorithm to solve GNBRL model. Then the convergence of GNBRL is estab-
lished. Finally, a stopping criterion for the algorithm is given.

4.1. ELADMM algorithm. In real-world HSIs data, the entries in a spectral vector are
corrupted by Gaussian noise [45, 62], so we convert (3.5) to the following problem,

min
\scrA ,\scrL ,\scrS 

3\sum 
u=1

\alpha u \| \nabla u\scrA \| \psi + \lambda 1 \| \scrL \| \psi + \lambda 2 \| \scrS \| \ell \psi F,1 + \beta f (\scrA ,\scrL ,\scrS ) ,(4.1)

where f (\scrA ,\scrL ,\scrS ) = 1
2 \| \scrA \ast \scrL + \scrS  - \scrX \| 2F . Now we develop an ELADMM algorithm to solve

problem (4.1). By introducing the auxiliary variable \scrC u =\nabla u\scrA , u \in [3], problem (4.1) can be
rewritten as:

min
\scrA ,\scrL ,\scrS ,\{ \scrC u\} 3

u=1

3\sum 
u=1

\alpha u \| \scrC u\| \psi + \lambda 1 \| \scrL \| \psi + \lambda 2 \| \scrS \| \ell \psi F,1 + \beta f (\scrA ,\scrL ,\scrS ) s.t. \scrC u =\nabla u\scrA , u\in [3].

(4.2)

The augmented Lagrangian function of (4.2) can be given by

L (\scrS ,\scrA ,\scrC u,\scrL ;\scrT u, \beta u) =
3\sum 

u=1

\biggl( 
\alpha u \| \scrC u\| \psi + \langle \scrT u,\nabla u\scrA  - \scrC u\rangle +

\beta u
2

\| \nabla u\scrA  - \scrC u\| 2F

\biggr) 
+ \lambda 1 \| \scrL \| \psi + \lambda 2 \| \scrS \| \ell \psi F,1 + \beta f (\scrA ,\scrL ,\scrS ) ,

(4.3)

where \beta u for u\in [3] are the penalty parameters, and \scrT u for u\in [3] are the Lagrange multipliers.
Under the ADMM algorithm framework, we can alternatively update each variable,\left\{           

\scrS t+1 \in argmin\scrS L
\bigl( 
\scrS ,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
,

\scrA t+1 \in argmin\scrA L
\bigl( 
\scrS t+1,\scrA ,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
,

\scrC t+1
u \in argmin\scrC u L

\bigl( 
\scrS t+1,\scrA t+1,\scrC u,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
,

\scrL t+1 \in argmin\scrL L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL ;\scrT t
u , \beta 

t
u

\bigr) 
,

\scrT t+1
u = \scrT t

u + \beta tu
\bigl( 
\nabla u\scrA t+1  - \scrC t+1

u

\bigr) 
, \beta t+1

u = \rho \beta tu,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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928 QUAN YU AND MINRU BAI

where t denotes the iteration number and \rho is a constant value greater than 1. We then shall
discuss how to solve its subproblems for each involved variable.

4.1.1. Computing \bfscrS \bfitt +\bfone . Fixing other variables except for \scrS in (4.3), \scrS t+1 is determined
by solving the following optimization problem:

argmin
\scrS 

\lambda 2 \| \scrS \| \ell \psi F,1 +
\beta 

2

\bigm\| \bigm\| \scrA t \ast \scrL t + \scrS  - \scrX 
\bigm\| \bigm\| 2
F
.(4.4)

To solve this problem, we need to introduce the following theorem.

Theorem 4.1. For a positive number \lambda , the proximal operator of prox\lambda \| \cdot \| \psi F
(\bfitz ) has a closed-

form solution, i.e.,

\bfitx  \star =prox\lambda \| \cdot \| \psi 
F
(\bfitz ) := argmin

\bfitx 

\biggl\{ 
\lambda \psi (\| \bfitx \| F ) +

1

2
\| \bfitx  - z\| 2F

\biggr\} 
=

\Biggl\{ 
\phi (\| \bfitz \| F ) \bfitz 

\| \bfitz \| F , \bfitz \not = 0,

0, \bfitz = 0,

where

\phi (z)\in prox\lambda \psi (z) := arg min
x\in \BbbR +

\biggl\{ 
\lambda \psi (x) +

1

2
(x - z)2

\biggr\} 
.

Proof. It is clear that \bfitx  \star = 0 when \bfitz = 0. Therefore, we only need to consider \bfitz \not = 0 in
the following. From \phi (z)\in prox\lambda \psi (z), we have

\lambda \psi 

\biggl( \bigm\| \bigm\| \bigm\| \bigm\| \phi (\| \bfitz \| F ) \bfitz 

\| \bfitz \| F

\bigm\| \bigm\| \bigm\| \bigm\| 
F

\biggr) 
+

1

2

\bigm\| \bigm\| \bigm\| \bigm\| \phi (\| \bfitz \| F ) \bfitz 

\| \bfitz \| F
 - \bfitz 

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

= \lambda \psi (\phi (\| \bfitz \| F )) +
1

2
(\phi (\| \bfitz \| F ) - \| \bfitz \| F )2

\leq \lambda \psi (\| \bfitx \| F ) +
1

2
(\| \bfitx \| F  - \| \bfitz \| F )2 \leq \lambda \psi (\| \bfitx \| F ) +

1

2
\| \bfitx  - \bfitz \| 2F ,

which completes the proof.

By Theorem 4.1, the optimal solution of (4.4) is given by

\scrS t+1 (i, j, :) = prox\lambda 2
\beta 
\psi (\| \bfitz \bfiti \bfitj \| F )

\bfitz \bfiti \bfitj 

\| \bfitz \bfiti \bfitj \| F
,(4.5)

where \bfitz \bfiti \bfitj =\scrZ (i, j, :) with \scrZ =\scrX  - \scrA t \ast \scrL t for i\in [n1], j \in [n2].

4.1.2. Computing \bfscrA \bfitt +\bfone . Although L(\scrS ,\scrA ,\scrC u,\scrL ;\scrT u, \beta u) with respect to \scrA is convex,
there is no closed-form solution. Similarly to [51, 57], we update \scrA by solving the following
subproblem,

argmin
\scrA 

3\sum 
u=1

\biggl( \bigl\langle 
\scrT t
u ,\nabla u\scrA  - \scrC tu

\bigr\rangle 
+
\beta tu
2

\bigm\| \bigm\| \nabla u\scrA  - \scrC tu
\bigm\| \bigm\| 2
F

\biggr) 
+ \beta 

\Bigl\langle 
\nabla \scrA f

\Bigl( 
\^\scrA t,\scrL t,\scrS t+1

\Bigr) 
,\scrA  - \^\scrA t

\Bigr\rangle 
+
\beta lt\scrA 
2

\bigm\| \bigm\| \bigm\| \scrA  - \^\scrA t
\bigm\| \bigm\| \bigm\| 2
F

= argmin
\scrA 

3\sum 
u=1

\beta tu
2

\bigm\| \bigm\| \bigm\| \bigm\| \nabla u\scrA  - 
\biggl( 
\scrC tu  - 

\scrT t
u

\beta tu

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
F

+
\beta lt\scrA 
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrA  - 

\left(  \^\scrA t  - 
\nabla \scrA f

\Bigl( 
\^\scrA t,\scrL t,\scrS t+1

\Bigr) 
lt\scrA 

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

,

(4.6)
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HYPERSPECTRAL ANOMALY DETECTION 929

where lt\scrA \geq l\scrA (f), l\scrA (f) is a Lipschitz constant of\nabla \scrA f(\scrA ,\scrL t,\scrS t+1) = (\scrA \ast \scrL t+\scrS t+1 - \scrX )\ast (\scrL t)H
with respect to \scrA , and \^\scrA t is an extrapolated point. To optimize the above problem, we can
solve the following linear system,\Biggl( 

\beta lt\scrA \scrI +

3\sum 
u=1

\beta tu\nabla H
u \nabla u

\Biggr) 
(\scrA ) = \beta lt\scrA \^\scrA t  - \beta \nabla \scrA f

\Bigl( 
\^\scrA t,\scrL t,\scrS t+1

\Bigr) 
+

3\sum 
u=1

\nabla H
u

\bigl( 
\beta tu\scrC tu  - \scrT t

u

\bigr) 
,(4.7)

where \nabla H
u (\cdot ) denotes the transpose operator of \nabla u(\cdot ). Due to the block-circulant structure

of the matrix corresponding to the operator \nabla H
u \nabla u, it can be diagonalized by the three-

imensional FFT matrix. Specifically, following [26, 39], by performing a Fourier transform on
both sides of (4.7) and adopting the convolution theorem, the closed-form solution to \scrA t+1

can be easily deduced as

\scrA t+1 =\scrF  - 1

\left(  \scrF 
\Bigl( 
\beta lt\scrA 

\^\scrA t  - \beta \nabla \scrA f
\Bigl( 
\^\scrA t,\scrL t,\scrS t+1

\Bigr) \Bigr) 
+
\sum 3

u=1\scrF (\nabla u)
H \odot \scrF 

\bigl( 
\beta tu\scrC tu  - \scrT t

u

\bigr) 
\beta lt\scrA \scrE +

\sum 3
u=1 \beta 

t
u | \scrF (\nabla u)| 2

\right)  .

(4.8)

Here \scrE represents the tensor with all elements as 1, \odot is the elementwise multiplication,
\scrF (\cdot ) is the Fourier transform, and | \cdot | 2 is the elementwise square operation. Here, we take
lt\scrA = \| \scrL t\| 2 + \epsilon with \epsilon > 0 and \^\scrA t =\scrA t + \omega t\scrA (\scrA t  - \scrA t - 1), where

\omega t\scrA =min

\left\{   \^\omega t, \delta \omega 

\sqrt{} 
lt - 1
\scrA 
lt\scrA 

\right\}   , \delta \omega < 1, \^\omega t =
lt - 1  - 1

lt
, l0 = 1, lt =

1

2

\biggl( 
1 +

\sqrt{} 
1 + 4(lt - 1)2

\biggr) 
.

4.1.3. Computing \bfscrC \bfitt +\bfone 
\bfitu . Fixing other variables except for \scrC u in (4.3), we update \scrC u by

solving the following subproblem:

argmin
\scrC u

\alpha u \| \scrC u\| \psi +
\bigl\langle 
\scrT t
u ,\nabla u\scrA t+1  - \scrC u

\bigr\rangle 
+
\beta tu
2

\bigm\| \bigm\| \nabla u\scrA t+1  - \scrC u
\bigm\| \bigm\| 2
F

= argmin
\scrC u

\alpha u \| \scrC u\| \psi +
\beta tu
2

\bigm\| \bigm\| \bigm\| \bigm\| \scrC u  - \biggl( \nabla u\scrA t+1 +
\scrT t
u

\beta tu

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 2
F

.

(4.9)

By Lemma B.1, (4.9) can be solved by

\scrC t+1
u =prox\alpha u

\beta tu
\| \cdot \| 

\psi 

\biggl( 
\nabla u\scrA t+1 +

\scrT t
u

\beta tu

\biggr) 
.(4.10)

4.1.4. Computing \bfscrL \bfitt +\bfone . Fixing other variables except for \scrL in (4.3), we update \scrL by
solving the following subproblem:

argmin
\scrL 

\lambda 1 \| \scrL \| \psi + \beta f
\bigl( 
\scrA t+1,\scrL ,\scrS t+1

\bigr) 
.(4.11)

Since the \| \scrL \| \psi regularizer is nonconvex, we cannot use an extrapolation method like the one
for computing \scrA . We propose a new extrapolation method to solve problem (4.11). First, we
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930 QUAN YU AND MINRU BAI

give an extrapolated point \^\scrL t =\scrL t + \omega t\scrL (\scrL t  - \scrL t - 1) with \omega t\scrL =min\{ \^\omega t, \delta \omega (\gamma  - 1)
2\gamma 

\sqrt{} 
lt - 1
\scrL /lt\scrL \} and

lt\scrL = \gamma \| \scrA t+1\| 2 + \epsilon , \gamma > 1. Then we obtain \scrL t+1 by solving the following problem:

argmin
\scrL 

\lambda 1 \| \scrL \| \psi + \beta 
\Bigl\langle 
\nabla \scrL f

\Bigl( 
\scrA t+1, \^\scrL t,\scrS t+1

\Bigr) 
,\scrL  - \^\scrL t

\Bigr\rangle 
+
\beta lt\scrL 
2

\bigm\| \bigm\| \bigm\| \scrL  - \^\scrL t
\bigm\| \bigm\| \bigm\| 2
F

= argmin
\scrL 

\lambda 1 \| \scrL \| \psi +
\beta lt\scrL 
2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrL  - 

\left(  \^\scrL t  - 
\nabla \scrL f

\Bigl( 
\scrA t+1, \^\scrL t,\scrS t+1

\Bigr) 
lt\scrL 

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

.

(4.12)

By Lemma B.1, the optimal solution of (4.12) is

\scrL t+1 =prox \lambda 1
\beta lt\scrL 

\| \cdot \| 
\psi 

\left(  \^\scrL t  - 
\nabla \scrL f

\Bigl( 
\scrA t+1, \^\scrL t,\scrS t+1

\Bigr) 
lt\scrL 

\right)  .(4.13)

We summarize the algorithm for GNBRL in Algorithm 4.1.

Remark 4.2. We choose ADMM for optimization based on the reformulation in (4.2).
To enable efficient computation of \scrA t+1 and \scrL t+1, we apply a linearization technique to the
smooth part f(\scrA ,\scrL ,\scrS ) with an additional proximal term to split the interdependent term such
that they can be solved independently. Moreover, we incorporate an extrapolation method
in Steps 2 and 5 to improve the performance of the algorithm. In summary, we develop an
ELADMM algorithm to solve our proposed GNBRL model.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone ELADMM method to solve (4.2).

\bfI \bfn \bfp \bfu \bft : The tensor data \scrX , parameters \{ \alpha u\} 3u=1, \lambda 1, \lambda 2, \beta .

\bfI \bfn \bfi \bft \bfi \bfa \bfl \bfi \bfz \bfe : \scrA 0, \scrL 0, \scrS 0,
\bigl\{ 
\scrC 0
u, \scrT 0

u

\bigr\} 3
u=1

,
\bigl\{ 
\beta 0u
\bigr\} 3
u=1

.

\bfw \bfh \bfi \bfl \bfe not converge \bfd \bfo 
\bfitS \bfitt \bfite \bfitp \bfone . Update \scrS t+1 according to (4.5).

\bfitS \bfitt \bfite \bfitp \bftwo . Let \^\scrA t =\scrA t + \omega t\scrA 
\bigl( 
\scrA t  - \scrA t - 1

\bigr) 
.

\bfitS \bfitt \bfite \bfitp \bfthree . Update \scrA t+1 according to (4.8).
\bfitS \bfitt \bfite \bfitp \bffour . Update \scrC t+1

u according to (4.10).

\bfitS \bfitt \bfite \bfitp \bffive . Let \^\scrL t =\scrL t + \omega t\scrL 
\bigl( 
\scrL t  - \scrL t - 1

\bigr) 
.

\bfitS \bfitt \bfite \bfitp \bfsix . Update \scrL t+1 according to (4.13).
\bfitS \bfitt \bfite \bfitp \bfseven . Update multipliers \scrT t+1

u and penalty parameters \beta t+1
u according to\Biggl\{ 

\scrT t+1
u = \scrT t

u + \beta tu
\bigl( 
\nabla u\scrA t+1  - \scrC t+1

u

\bigr) 
,

\beta t+1
u = \rho \beta tu, u\in [3].

(4.14)

Let t := t+ 1 and go to \bfitS \bfitt \bfite \bfitp \bfone .
\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

\bfO \bfu \bft \bfp \bfu \bft : \scrS t+1, \scrA t+1, \scrL t+1.
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HYPERSPECTRAL ANOMALY DETECTION 931

4.2. Convergence analysis. This subsection presents the convergence analysis of our pro-
posed algorithm. We state the main results in Theorem 4.7 below. Before that, we present
some lemmas.

Lemma 4.3. The sequence \{ \scrT t
u\} \infty t=1 for each u\in [3] is bounded.

Proof. By the first order necessary optimality condition of (4.9), we have

0\in \alpha u
\partial 

\partial \scrC u

\bigm| \bigm| \bigm| \bigm| 
\scrC u=\scrC t+1

u

\| \scrC u\| \psi  - \scrT t
u + \beta tu

\bigl( 
Ct+1
u  - \nabla u\scrA t+1

\bigr) 
.(4.15)

Let \scrC u = \scrU \ast \scrD \ast \scrV H . Then it follows that

\partial 

\partial \=C
(k)
u

\bigm\| \bigm\| \bigm\| \=C(k)
u

\bigm\| \bigm\| \bigm\| 
\psi 
= \=U (k) diag

\Bigl( 
\partial \psi 
\Bigl( 
\=D
(k)
i,i

\Bigr) \Bigr) \Bigl( 
\=V (k)

\Bigr) H
,

and then one can obtain \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \partial 

\partial \=C
(k)
u

\bigm\| \bigm\| \bigm\| \=C(k)
u

\bigm\| \bigm\| \bigm\| 
\psi 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

=

r\sum 
i=1

\partial \psi 
\Bigl( 
\=D
(k)
i,i

\Bigr) 
.

Next, we will prove that
\sum r

i=1 \partial \psi (
\=D
(k)
i,i ) is bounded. We split the proof into five cases.

Case 1. \psi (x) = x.
\sum r

i=1 \partial \psi (
\=D
(k)
i,i ) = r is bounded.

Case 2. \psi (x) = xp. In order to overcome the singularity of (xp)\prime = p/x1 - p near \infty as x
near 0, we consider for 0< \epsilon \ll 1 the approximation

(xp)\prime \approx p

max\{ \epsilon 1 - p, x1 - p\} 
.

Thus,

r\sum 
i=1

\partial \psi 
\Bigl( 
\=D
(k)
i,i

\Bigr) 
=

r\sum 
i=1

p

max

\biggl\{ 
\epsilon 1 - p,

\Bigl( 
\=D
(k)
i,i

\Bigr) 1 - p\biggr\} \leq pr

\epsilon 1 - p

is bounded.
Case 3. \psi (x) =\psi \mathrm{M}\mathrm{C}\mathrm{P}(x).

\sum r
i=1 \partial \psi (

\=D
(k)
i,i )\leq r is bounded.

Case 4. \psi (x) = log(x\theta + 1).

r\sum 
i=1

\partial \psi 
\Bigl( 
\=D
(k)
i,i

\Bigr) 
=

r\sum 
i=1

1

\=D
(k)
i,i + \theta 

\leq r

\theta 

is bounded.
Case 5. \psi \in \{ \psi \mathrm{C}\mathrm{a}\mathrm{p}\mathrm{L}1,\psi \mathrm{C}\mathrm{a}\mathrm{p}\mathrm{L}\mathrm{p},\psi \mathrm{C}\mathrm{a}\mathrm{p}\mathrm{M}\mathrm{C}\mathrm{P},\psi \mathrm{C}\mathrm{a}\mathrm{p}\mathrm{L}\mathrm{o}\mathrm{g}\} . From Cases 1--4, we obtain the bound-

edness of
\sum r

i=1 \partial \psi 
\Bigl( 
\=D
(k)
i,i

\Bigr) 
.

Combining all cases, we see that

\partial 

\partial \=\scrC u
\| \scrC u\| \psi =

\Biggl[ 
\partial 

\partial \=C
(1)
u

\bigm\| \bigm\| \bigm\| \=C(1)
u

\bigm\| \bigm\| \bigm\| 
\psi 
| \cdot \cdot \cdot | \partial 

\partial \=C
(n3)
u

\bigm\| \bigm\| \bigm\| \=C(n3)
u

\bigm\| \bigm\| \bigm\| 
\psi 

\Biggr] 
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932 QUAN YU AND MINRU BAI

is bounded. For \=\scrC u = \scrC u \times 3 Fn3
and using the chain rule in matrix calculus, one can obtain

that \partial 
\partial \scrC u \| \scrC u\| \psi = \partial 

\partial \=\scrC u
\| \scrC u\| \psi \times 3 F

H
n3

is bounded. Combining this with (4.14) and (4.15),

\scrT t+1
u \in \alpha u

\partial 

\partial \scrC u

\bigm| \bigm| \bigm| \bigm| 
\scrC u=\scrC t+1

u

\| \scrC u\| \psi 

is bounded.

Lemma 4.4. Let \{ \scrS t,\scrA t,\scrC tu,\scrL t;\scrT t
u , \beta 

t
u\} \infty t=1 be the sequence generated by Algorithm 4.1, then

L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t+1;\scrT t
u , \beta 

t
u

\bigr) 
 - L

\bigl( 
\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
\leq 
\beta lt - 1

\scrA 
2

\delta 2\omega 
\bigm\| \bigm\| \scrA t  - \scrA t - 1

\bigm\| \bigm\| 2
F
 - 
\beta lt\scrA 
2

\bigm\| \bigm\| \scrA t+1  - \scrA t
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta lt - 1
\scrL 

4\gamma 
\delta 2\omega 
\bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F

 - 
(\gamma  - 1)\beta lt\scrL 

4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
.

Proof. Since \scrS t+1 is optimal to (4.4), we have

L
\bigl( 
\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
\geq L

\bigl( 
\scrS t+1,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
.(4.16)

Using Lemma 2.1 of [54], we have

L
\bigl( 
\scrS t+1,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
 - L

\bigl( 
\scrS t+1,\scrA t+1,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
\geq 
\beta lt\scrA 
2

\bigm\| \bigm\| \bigm\| \scrA t+1  - \^\scrA t
\bigm\| \bigm\| \bigm\| 2
F
+ \beta lt\scrA 

\Bigl\langle 
\^\scrA t  - \scrA t,\scrA t+1  - \^\scrA t

\Bigr\rangle 
=
\beta lt\scrA 
2

\bigm\| \bigm\| \scrA t+1  - \scrA t
\bigm\| \bigm\| 2
F
 - 
\beta lt\scrA 
2

\bigl( 
\omega t\scrA 
\bigr) 2 \bigm\| \bigm\| \scrA t  - \scrA t - 1

\bigm\| \bigm\| 2
F

\geq 
\beta lt\scrA 
2

\bigm\| \bigm\| \scrA t+1  - \scrA t
\bigm\| \bigm\| 2
F
 - 
\beta lt - 1

\scrA 
2

\delta 2\omega 
\bigm\| \bigm\| \scrA t  - \scrA t - 1

\bigm\| \bigm\| 2
F
,

(4.17)

where we have used \omega t\scrA \leq \delta \omega 

\sqrt{} 
lt - 1
\scrA /lt\scrA to get the last inequality.

Since \scrC t+1
u is optimal to (4.10), we have

\alpha u
\bigm\| \bigm\| \scrC t+1

u

\bigm\| \bigm\| 
\psi 
+
\bigl\langle 
\scrT t
u ,\nabla u\scrA t+1  - \scrC t+1

u

\bigr\rangle 
+
\beta tu
2

\bigm\| \bigm\| \nabla u\scrA t+1  - \scrC t+1
u

\bigm\| \bigm\| 2
F

\leq \alpha u
\bigm\| \bigm\| \scrC tu\bigm\| \bigm\| \psi +

\bigl\langle 
\scrT t
u ,\nabla u\scrA t+1  - \scrC tu

\bigr\rangle 
+
\beta tu
2

\bigm\| \bigm\| \nabla u\scrA t+1  - \scrC tu
\bigm\| \bigm\| 2
F
,

(4.18)

which implies

L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t;\scrT t
u , \beta 

t
u

\bigr) 
\leq L

\bigl( 
\scrS t+1,\scrA t+1,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
.(4.19)

Denote \nabla \scrL f\scrL :=\nabla \scrL f(\scrA t+1, \scrL , \scrS t+1). Since \scrL t+1 is optimal to (4.12), we have

\lambda 1
\bigm\| \bigm\| \scrL t+1

\bigm\| \bigm\| 
\psi 
+ \beta 

\Bigl\langle 
\nabla \scrL f \^\scrL t ,\scrL 

t+1  - \^\scrL t
\Bigr\rangle 
+
\beta lt\scrL 
2

\bigm\| \bigm\| \bigm\| \scrL t+1  - \^\scrL t
\bigm\| \bigm\| \bigm\| 2
F

\leq \lambda 1
\bigm\| \bigm\| \scrL t\bigm\| \bigm\| 

\psi 
+ \beta 

\Bigl\langle 
\nabla \scrL f \^\scrL t ,\scrL 

t  - \^\scrL t
\Bigr\rangle 
+
\beta lt\scrL 
2

\bigm\| \bigm\| \bigm\| \scrL t  - \^\scrL t
\bigm\| \bigm\| \bigm\| 2
F
.

(4.20)
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HYPERSPECTRAL ANOMALY DETECTION 933

Since \nabla \scrL f\scrL is Lipschitz continuous, we have

f
\bigl( 
\scrA t+1,\scrL t+1,\scrS t+1

\bigr) 
\leq f

\bigl( 
\scrA t+1,\scrL t,\scrS t+1

\bigr) 
+
\bigl\langle 
\nabla \scrL f\scrL t ,\scrL t+1  - \scrL t

\bigr\rangle 
+
lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
.(4.21)

Summing up (4.20) and (4.21), we notice that

\lambda 1
\bigm\| \bigm\| \scrL t+1

\bigm\| \bigm\| 
\psi 
+ \beta f

\bigl( 
\scrA t+1,\scrL t+1,\scrS t+1

\bigr) 
 - \lambda 1

\bigm\| \bigm\| \scrL t\bigm\| \bigm\| 
\psi 
 - \beta f

\bigl( 
\scrA t+1,\scrL t,\scrS t+1

\bigr) 
\leq \beta 

\bigl\langle 
\nabla \scrL f\scrL t  - \nabla \scrL f \^\scrL t ,\scrL 

t+1  - \scrL t
\bigr\rangle 
+
\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
+
\beta lt\scrL 
2

\bigm\| \bigm\| \bigm\| \scrL t - \^\scrL t
\bigm\| \bigm\| \bigm\| 2
F
 - 
\beta lt\scrL 
2

\bigm\| \bigm\| \bigm\| \scrL t+1 - \^\scrL t
\bigm\| \bigm\| \bigm\| 2
F

= \beta 
\bigl\langle 
\nabla \scrL f\scrL t  - \nabla \scrL f \^\scrL t ,\scrL 

t+1  - \scrL t
\bigr\rangle 
+ \beta lt\scrL 

\Bigl\langle 
\scrL t  - \scrL t+1,\scrL t  - \^\scrL t

\Bigr\rangle 
 - 

(\gamma  - 1)\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

= \beta 
\Bigl\langle 
\scrL t+1  - \scrL t,\nabla \scrL f\scrL t  - \nabla \scrL f \^\scrL t  - lt\scrL 

\Bigl( 
\scrL t  - \^\scrL t

\Bigr) \Bigr\rangle 
 - 

(\gamma  - 1)\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

= \beta 
\Bigl\langle 
\scrL t+1  - \scrL t,

\Bigl( \bigl( 
\scrA t+1

\bigr) H \ast \scrA t+1  - lt\scrL \scrI 
\Bigr) 
\ast 
\Bigl( 
\scrL t  - \^\scrL t

\Bigr) \Bigr\rangle 
 - 

(\gamma  - 1)\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

\leq \beta 
\bigm\| \bigm\| \scrL t+1  - \scrL t

\bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \scrL t  - \^\scrL t
\bigm\| \bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \bigl( \scrA t+1
\bigr) H \ast \scrA t+1  - lt\scrL \scrI 

\bigm\| \bigm\| \bigm\|  - (\gamma  - 1)\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

\leq \beta lt\scrL 
\bigm\| \bigm\| \scrL t+1  - \scrL t

\bigm\| \bigm\| 
F

\bigm\| \bigm\| \bigm\| \scrL t  - \^\scrL t
\bigm\| \bigm\| \bigm\| 
F
 - 

(\gamma  - 1)\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

= \beta lt\scrL \omega 
t
\scrL 
\bigm\| \bigm\| \scrL t+1  - \scrL t

\bigm\| \bigm\| 
F

\bigm\| \bigm\| \scrL t  - \scrL t - 1
\bigm\| \bigm\| 
F
 - 

(\gamma  - 1)\beta lt\scrL 
2\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

\leq 
\gamma \beta lt\scrL 
(\gamma  - 1)

\bigl( 
\omega t\scrL 
\bigr) 2 \bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F
 - 

(\gamma  - 1)\beta lt\scrL 
4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F

\leq 
(\gamma  - 1)\beta lt - 1

\scrL 
4\gamma 

\delta 2\omega 
\bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F
 - 

(\gamma  - 1)\beta lt\scrL 
4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
.

(4.22)

Here, we have used the Cauchy--Schwarz inequality in the second inequality, the Young's

inequality in the fourth one, and \omega t\scrL \leq \delta \omega (\gamma  - 1)
2\gamma 

\sqrt{} 
lt - 1
\scrL /lt\scrL to get the last inequality, the fact

\^\scrL t =\scrL t + \omega t\scrL (\scrL t  - \scrL t - 1) to have the last equality. (4.22) implies that

L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t;\scrT t
u , \beta 

t
u

\bigr) 
 - L

\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t+1;\scrT t
u , \beta 

t
u

\bigr) 
\geq 

(\gamma  - 1)\beta lt\scrL 
4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
 - 

(\gamma  - 1)\beta lt - 1
\scrL 

4\gamma 
\delta 2\omega 
\bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F
.

(4.23)

Summing up (4.16), (4.17), (4.19), and (4.23), one has

L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t+1;\scrT t
u , \beta 

t
u

\bigr) 
 - L

\bigl( 
\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
\leq 
\beta lt - 1

\scrA 
2

\delta 2\omega 
\bigm\| \bigm\| \scrA t  - \scrA t - 1

\bigm\| \bigm\| 2
F
 - 
\beta lt\scrA 
2

\bigm\| \bigm\| \scrA t+1  - \scrA t
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta lt - 1
\scrL 

4\gamma 
\delta 2\omega 
\bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F

 - 
(\gamma  - 1)\beta lt\scrL 

4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
.
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934 QUAN YU AND MINRU BAI

Lemma 4.5. The sequence \{ \scrS t,\scrA t,\scrC tu,\scrL t,\scrT t
u\} \infty t=1 generated by Algorithm 4.1 is bounded if

the sequence \{ \scrA t,\scrL t\} \infty t=1 is bound.

Proof. According to the iterative process of Algorithm 4.1 we can obtain

L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t+1;\scrT t+1
u , \beta t+1

u

\bigr) 
 - L

\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t+1;\scrT t
u , \beta 

t
u

\bigr) 
=

3\sum 
u=1

\biggl( \bigl\langle 
\scrT t+1
u  - \scrT t

u ,\nabla u\scrA t+1  - \scrC t+1
u

\bigr\rangle 
+
\beta t+1
u  - \beta tu

2

\bigm\| \bigm\| \nabla u\scrA t+1  - \scrC t+1
u

\bigm\| \bigm\| 2
F

\biggr) 

=

3\sum 
u=1

\beta tu + \beta t+1
u

2 (\beta tu)
2

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 2
F
.

(4.24)

Combining this with Lemma 4.4 gives

L
\bigl( 
\scrS t+1,\scrA t+1,\scrC t+1

u ,\scrL t+1;\scrT t+1
u , \beta t+1

u

\bigr) 
 - L

\bigl( 
\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
\leq 
\beta lt - 1

\scrA 
2

\delta 2\omega 
\bigm\| \bigm\| \scrA t  - \scrA t - 1

\bigm\| \bigm\| 2
F
 - 
\beta lt\scrA 
2

\bigm\| \bigm\| \scrA t+1  - \scrA t
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta lt - 1
\scrL 

4\gamma 
\delta 2\omega 
\bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F

 - 
(\gamma  - 1)\beta lt\scrL 

4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
+

3\sum 
u=1

\beta tu + \beta t+1
u

2 (\beta tu)
2

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 2
F

=
\beta lt - 1

\scrA 
2

\bigm\| \bigm\| \scrA t  - \scrA t - 1
\bigm\| \bigm\| 2
F
 - 
\beta lt\scrA 
2

\bigm\| \bigm\| \scrA t+1  - \scrA t
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta lt - 1
\scrL 

4\gamma 

\bigm\| \bigm\| \scrL t  - \scrL t - 1
\bigm\| \bigm\| 2
F

 - 
(\gamma  - 1)\beta lt\scrL 

4\gamma 

\bigm\| \bigm\| \scrL t+1  - \scrL t
\bigm\| \bigm\| 2
F
+
\beta lt - 1

\scrA 
\bigl( 
\delta 2\omega  - 1

\bigr) 
2

\bigm\| \bigm\| \scrA t  - \scrA t - 1
\bigm\| \bigm\| 2
F

+
(\gamma  - 1)\beta lt - 1

\scrL 
4\gamma 

\bigl( 
\delta 2\omega  - 1

\bigr) \bigm\| \bigm\| \scrL t  - \scrL t - 1
\bigm\| \bigm\| 2
F
+

3\sum 
u=1

\beta tu + \beta t+1
u

2 (\beta tu)
2

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 2
F
.

(4.25)

Then, we have

L
\bigl( 
\scrS T+1,\scrA T+1,\scrC T+1

u ,\scrL T+1;\scrT T+1
u , \beta T+1

u

\bigr) 
 - L

\bigl( 
\scrS 1,\scrA 1,\scrC 1

u,\scrL 1;\scrT 1
u , \beta 

1
u

\bigr) 
\leq 
\beta l0\scrA 
2

\bigm\| \bigm\| \scrA 1  - \scrA 0
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta l0\scrL 
4\gamma 

\bigm\| \bigm\| \scrL 1  - \scrL 0
\bigm\| \bigm\| 2
F
+

T\sum 
t=1

3\sum 
u=1

\beta tu + \beta t+1
u

2 (\beta tu)
2

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 2
F

\leq 
\beta l0\scrA 
2

\bigm\| \bigm\| \scrA 1  - \scrA 0
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta l0\scrL 
4\gamma 

\bigm\| \bigm\| \scrL 1  - \scrL 0
\bigm\| \bigm\| 2
F
+

3\sum 
u=1

max
t

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 2
F

T\sum 
t=1

\beta tu + \beta t+1
u

2 (\beta tu)
2 .

Given that \{ \scrT t
u\} \infty t=1 is bounded, the quantity maxt \| \scrT t+1

u  - \scrT t
u\| 2F must be bounded as well.

Notice that \beta t+1
u = \rho \beta tu = \rho t\beta 1u, then

\infty \sum 
t=1

\beta tu + \beta t+1
u

2 (\beta tu)
2 =

1+ \rho 

2\beta 1u

\infty \sum 
t=1

1

\rho t - 1
=

\rho (\rho + 1)

2\beta 1u(\rho  - 1)
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HYPERSPECTRAL ANOMALY DETECTION 935

is bounded, and hence L(\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t
u , \beta 

t
u) is upper bounded. We have from (4.3) that

L
\bigl( 
\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t

u , \beta 
t
u

\bigr) 
+

3\sum 
u=1

1

2\beta tu

\bigm\| \bigm\| \scrT t
u

\bigm\| \bigm\| 2
F

=

3\sum 
u=1

\Biggl( 
\alpha u
\bigm\| \bigm\| \scrC tu\bigm\| \bigm\| \psi +

\beta tu
2

\bigm\| \bigm\| \bigm\| \bigm\| \nabla u\scrA t  - \scrC tu +
\scrT t
u

\beta tu

\bigm\| \bigm\| \bigm\| \bigm\| 2
F

\Biggr) 
+ \lambda 1

\bigm\| \bigm\| \scrL t\bigm\| \bigm\| 
\psi 
+ \lambda 2

\bigm\| \bigm\| \scrS t\bigm\| \bigm\| 
\ell \psi F,1

+ \beta f
\bigl( 
\scrA t,\scrL t,\scrS t

\bigr) 
.

(4.26)

Note that each term on the right-hand side of (4.26) is nonnegative. By the boundedness
of \scrT t

u for u \in [3] and L(\scrS t,\scrA t,\scrC tu,\scrL t;\scrT t
u , \beta 

t
u), we know that \| \nabla u\scrA t  - \scrC tu + \scrT t

u/\beta 
t
u\| F and

\| \scrA t \ast \scrL t+ \scrS t - \scrX \| F are bounded. Benefiting from bounded \scrA t, \scrL t, and \scrT t
u , we can conclude

that \scrS t and \scrC tu have a boundary.

Lemma 4.6. The sequence \{ \scrA t,\scrL t\} \infty t=1 generated by Algorithm 4.1 satisfies limt\rightarrow \infty (\scrA t  - 
\scrA t - 1) = 0 and limt\rightarrow \infty (\scrL t  - \scrL t - 1) = 0.

Proof. Using lt - 1
\scrA \geq \epsilon and lt - 1

\scrL \geq \epsilon , we get from (4.25) that\bigl( 
1 - \delta 2\omega 

\bigr) 
\beta \epsilon 

2

\infty \sum 
t=1

\bigm\| \bigm\| \scrA t  - \scrA t - 1
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta \epsilon 

4\gamma 

\bigl( 
1 - \delta 2\omega 

\bigr) \infty \sum 
t=1

\bigm\| \bigm\| \scrL t  - \scrL t - 1
\bigm\| \bigm\| 2
F
 - 

3\sum 
u=1

1

2\beta \infty u
\| \scrT \infty 

u \| 2F

\leq L (\scrS \infty ,\scrA \infty ,\scrC \infty 
u ,\scrL \infty ;\scrT \infty 

u , \beta \infty u ) +

\bigl( 
1 - \delta 2\omega 

\bigr) 
\beta 

2

\infty \sum 
t=1

lt - 1
\scrA 
\bigm\| \bigm\| \scrA t  - \scrA t - 1

\bigm\| \bigm\| 2
F

+
(\gamma  - 1)\beta 

4\gamma 

\bigl( 
1 - \delta 2\omega 

\bigr) \infty \sum 
t=1

lt - 1
\scrL 
\bigm\| \bigm\| \scrL t  - \scrL t - 1

\bigm\| \bigm\| 2
F

\leq L
\bigl( 
\scrS 1,\scrA 1,\scrC 1

u,\scrL 1;\scrT 1
u , \beta 

1
u

\bigr) 
+
\beta l0\scrA 
2

\bigm\| \bigm\| \scrA 1  - \scrA 0
\bigm\| \bigm\| 2
F
+

(\gamma  - 1)\beta l0\scrL 
4\gamma 

\bigm\| \bigm\| \scrL 1  - \scrL 0
\bigm\| \bigm\| 2
F

+

\infty \sum 
t=1

3\sum 
u=1

\beta tu + \beta t+1
u

2 (\beta tu)
2

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 2
F
<\infty .

Therefore, limt\rightarrow \infty (\scrA t  - \scrA t - 1) = 0 and limt\rightarrow \infty (\scrL t  - \scrL t - 1) = 0.

Theorem 4.7. Let \{ \scrS t,\scrA t,\scrC tu,\scrL t,\scrT t
u\} be a sequence generated by Algorithm 4.1. Sup-

pose that the sequence \{ \scrA t,\scrL t\} \infty t=1 is bound. Then any accumulation point of the sequence
\{ \scrS t,\scrA t,\scrC tu,\scrL t,\scrT t

u\} is a Karush--Kuhn--Tucker (KKT) point of the optimization problem (4.2).

Proof. If the sequence \{ \scrA t,\scrL t\} \infty t=1 is bound, then by Lemmas 4.3 and 4.5, we know that
the sequence \{ \scrS t,\scrA t,\scrC tu,\scrL t,\scrT t

u\} \infty t=1 is bounded. From the Bolzano--Weierstrass theorem [4],
Algorithm 4.1 has at least one accumulation point \{ \scrS  \star ,\scrA  \star ,\scrC  \star u,\scrL  \star ,\scrT  \star 

u \} and there exists one
sequence that converges to this accumulation point. Without loss of generality, we assume
that the sequence is \{ \scrS t,\scrA t,\scrC tu,\scrL t,\scrT t

u\} \infty t=1.
From the updating formula of \scrT t+1

u , we have

lim
t\rightarrow \infty 

\bigm\| \bigm\| \nabla u\scrA t+1  - \scrC t+1
u

\bigm\| \bigm\| 
F
= lim
t\rightarrow \infty 

1

\beta tu

\bigm\| \bigm\| \scrT t+1
u  - \scrT t

u

\bigm\| \bigm\| 
F
= 0.(4.27)
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936 QUAN YU AND MINRU BAI

Thus, limt\rightarrow \infty (\nabla u\scrA t - \scrC tu) = 0. Therefore we can obtain \nabla u\scrA  \star = \scrC  \star u for u\in [3]. This indicates
that this accumulation point can satisfy the feasible conditions of the GNBRL model.

For the \scrS -subproblem, by the first order optimal condition, we get

0\in \lambda 2
\partial 

\partial \scrS 

\bigm| \bigm| \bigm| \bigm| 
\scrS =\scrS t+1

\| \scrS \| \ell \psi F,1 + \beta \nabla \scrS f
\bigl( 
\scrA t,\scrL t,\scrS t+1

\bigr) 
.(4.28)

By Lemma 4.6, letting t\rightarrow \infty in (4.28), we have

0\in \lambda 2
\partial 

\partial \scrS 

\bigm| \bigm| \bigm| \bigm| 
\scrS =\scrS  \star 

\| \scrS \| \ell \psi F,1 + \beta \nabla \scrS f (\scrA  \star ,\scrL  \star ,\scrS  \star ) .(4.29)

For the \scrA -subproblem, by the first order optimal condition, we get

3\sum 
u=1

\bigl( 
\nabla H
u \scrT t

u + \beta tu\nabla H
u

\bigl( 
\nabla u\scrA t+1  - \scrC tu

\bigr) \bigr) 
+ \beta \nabla \scrA f

\Bigl( 
\^\scrA t,\scrL t,\scrS t+1

\Bigr) 
+ \beta lt\scrA 

\Bigl( 
\scrA t+1  - \^\scrA t

\Bigr) 
= 0.(4.30)

Combining limt\rightarrow \infty (\nabla u\scrA t - \scrC tu) = 0 and limt\rightarrow \infty (\scrA t - \scrA t - 1) = 0, one has limt\rightarrow \infty (\scrC tu - \scrC t - 1
u ) = 0.

Thus

lim
t\rightarrow \infty 

\scrT t
u + \beta tu

\bigl( 
\nabla u\scrA t+1  - \scrC tu

\bigr) 
= lim
t\rightarrow \infty 

\scrT t
u + \beta tu

\bigl( 
\nabla u\scrA t+1  - \scrC t+1

u

\bigr) 
= lim
t\rightarrow \infty 

\scrT t+1
u .(4.31)

According to the definition and the boundedness of \scrL t, we obtain that lt\scrA and \omega t\scrA are
bound. Combining this with Lemma 4.6 gives

lim
t\rightarrow \infty 

\nabla \scrA f
\Bigl( 
\^\scrA t,\scrL t,\scrS t+1

\Bigr) 
= lim
t\rightarrow \infty 

\nabla \scrA f
\bigl( 
\scrA t + \omega t\scrA 

\bigl( 
\scrA t  - \scrA t - 1

\bigr) 
,\scrL t,\scrS t+1

\bigr) 
= lim
t\rightarrow \infty 

\nabla \scrA f
\bigl( 
\scrA t+1,\scrL t+1,\scrS t+1

\bigr) 
,

lim
t\rightarrow \infty 

lt\scrA 

\Bigl( 
\scrA t+1  - \^\scrA t

\Bigr) 
= lim
t\rightarrow \infty 

lt\scrA 
\bigl( 
\scrA t+1  - \scrA t  - \omega t\scrA 

\bigl( 
\scrA t  - \scrA t - 1

\bigr) \bigr) 
= 0.

(4.32)

From (4.30), (4.31), and (4.32), we can easily observe that

3\sum 
u=1

\nabla H
u \scrT  \star 

u + \beta \nabla \scrA f (\scrA  \star ,\scrL  \star ,\scrS  \star ) = 0.(4.33)

For the \scrC u-subproblem, by the first order optimal condition, we get

0\in \alpha u
\partial 

\partial \scrC u

\bigm| \bigm| \bigm| \bigm| 
\scrC u=\scrC t+1

u

\| \scrC u\| \psi  - \scrT t
u + \beta tu

\bigl( 
Ct+1
u  - \nabla u\scrA t+1

\bigr) 
= \alpha u

\partial 

\partial \scrC u

\bigm| \bigm| \bigm| \bigm| 
\scrC u=\scrC t+1

u

\| \scrC u\| \psi  - \scrT t+1
u .

(4.34)

Letting t\rightarrow \infty , we have

0\in \alpha u
\partial 

\partial \scrC u

\bigm| \bigm| \bigm| \bigm| 
\scrC u=\scrC  \star u

\| \scrC u\| \psi  - \scrT  \star 
u .(4.35)
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HYPERSPECTRAL ANOMALY DETECTION 937

For the \scrL -subproblem, by the first order optimal condition, we get

0\in \lambda 1
\partial 

\partial \scrL 

\bigm| \bigm| \bigm| \bigm| 
\scrL =\scrL t+1

\| \scrL \| \psi + \beta \nabla \scrL f
\Bigl( 
\scrA t+1, \^\scrL t,\scrS t+1

\Bigr) 
+ \beta lt\scrL 

\Bigl( 
\scrL t+1  - \^\scrL t

\Bigr) 
.(4.36)

According to the boundedness of \scrA t+1, we obtain that lt\scrL is bound. Combining this with
Lemma 4.6 gives

lim
t\rightarrow \infty 

\nabla \scrL f
\Bigl( 
\scrA t+1, \^\scrL t,\scrS t+1

\Bigr) 
= lim
t\rightarrow \infty 

\nabla \scrL f
\bigl( 
\scrA t+1,\scrL t+1,\scrS t+1

\bigr) 
,

lim
t\rightarrow \infty 

lt\scrL 

\Bigl( 
\scrL t+1  - \^\scrL t

\Bigr) 
= 0.

(4.37)

From (4.36) and (4.37), we can easily observe that

0\in \lambda 1
\partial 

\partial \scrL 

\bigm| \bigm| \bigm| \bigm| 
\scrL =\scrL  \star 

\| \scrL \| \psi + \beta \nabla \scrL f (\scrA  \star ,\scrL  \star ,\scrS  \star ) .(4.38)

So, by \nabla u\scrA  \star = \scrC  \star u for u \in [3], (4.29), (4.33), (4.35), and (4.38), we have that \{ \scrS  \star ,\scrA  \star ,\scrC  \star u,
\scrL  \star ,\scrT  \star 

u \} is a KKT point of (4.2).

4.3. A stopping criterion for the GNBRL algorithm. To measure the precision of the op-
timal solution obtained by Algorithm 4.1, we used the relative KKT residual \vargamma =max\{ \vargamma 1, \vargamma 2\} .
Here \vargamma 1 =max\{ \vargamma S , \vargamma A, \vargamma C1

, \vargamma C2
, \vargamma C3

, \vargamma L\} with

\vargamma S =

\bigm\| \bigm\| \bigm\| \bigm\| \scrS  - prox\lambda 2\| \cdot \| \ell \psi 
F,1

(\scrS  - \beta \nabla \scrS f (\scrA ,\scrL ,\scrS ))
\bigm\| \bigm\| \bigm\| \bigm\| 
F

1 + \| \scrS \| F + \| \beta \nabla \scrS f (\scrA ,\scrL ,\scrS )\| F
, \vargamma Cu =

\bigm\| \bigm\| \bigm\| \scrC u  - prox\alpha u\| \cdot \| \psi (\scrC u + \scrT u)
\bigm\| \bigm\| \bigm\| 
F

1 + \| \scrC u\| F + \| \scrT u\| F
,

\vargamma A =

\bigm\| \bigm\| \bigm\| \sum 3
u=1\nabla H

u \scrT u+\beta \nabla \scrA f (\scrA ,\scrL ,\scrS )
\bigm\| \bigm\| \bigm\| 
F

1+
\sum 3

u=1 \| \nabla H
u \scrT u\| F +\| \beta \nabla \scrA f (\scrA ,\scrL ,\scrS )\| F

, \vargamma L =

\bigm\| \bigm\| \bigm\| \scrL  - prox\lambda 1\| \cdot \| \psi (\scrL  - \beta \nabla \scrL f (\scrA ,\scrL ,\scrS ))
\bigm\| \bigm\| \bigm\| 
F

1 + \| \scrL \| F + \| \beta \nabla \scrL f (\scrA ,\scrL ,\scrS )\| F
,

and \vargamma 2 =max\{ \chi 1, \chi 2, \chi 3\} with

\chi u =
\| \nabla u\scrA  - \scrC u\| F

1 + \| \nabla u\scrA \| F + \| \scrC u\| F
.

For a given tolerance \varepsilon , we will terminate the Algorithm 4.1 when \vargamma < \varepsilon or the maximum
number of iterations is reached.

5. Experiments. In this section, a series of experiments are conducted to evaluate the
performance of the proposed algorithm on a server with 16 logical CPU cores and 16 GB
memory. We implemented the codes of all algorithms in MATLAB 2022a and did not apply
any preprocessing to ensure fairness.

For comparison, we use some general methods in the experiments, such as classic global RX
[40], four matrix based methods (namely, RPCA [45], LRASR [53], LSMAD [62], GTVLRR
[9]), and three tensor based methods (namely, PTA [28], TPCA [8], TLRSR [49]). Besides
the visual observation of the resulted anomaly maps, the experimental results are evaluated
by the receiver operating characteristic (ROC) curve [23] and the area under the ROC curve
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(a) Airport1 (b) Airport2 (c) Urban (d) Beach

Figure 2. Pseudo-color images and ground truth maps of the four HSI data sets.

(AUC) [24] to quantitatively assess the detection accuracy. The ROC curve plots the varying
relationship of the probability of detection (PD) and false alarm rate for various possible
thresholds. The area under this curve is calculated as the AUC, and a higher AUC score
indicates a better detection method. The Algorithm 4.1 is terminated when \vargamma < \varepsilon = 10 - 3 or
the maximum number of 300 iterations is reached.

5.1. Hyperspectral data. The airport-beach-urban1 [22] scenes are employed to evaluate
the effectiveness of the proposed method for HAD tasks. The information from the data sets
is as follows.

(1) Airport: The first data set was captured by the airborne visible/infrared imaging
spectrometer (AVIRIS) [59] sensor over Los Angeles, which has a spatial resolution of 7.1 m.
This data set has a spatial dimension of 100 by 100 and 205 spectral bands. The false color
image and the ground truth map are shown in Figures 2(a)--(b).

(2) Urban: The second data set was generated based on an AVIRIS data set over Los
Angeles with a spatial resolution of 7.1 m. This data set has a spatial dimension of 205 by
100 and 100 spectral bands. The image scene and the ground truth map are illustrated in
Figure 2(c).

(3) Beach: The third data set was captured by the ROSIS-03 sensor in Pavia, which has
a spatial resolution of 1.3 m. This data set has a spatial dimension of 102 by 150 and 150
spectral bands. A sample band of the scene, together with its corresponding ground truth, is
shown in Figure 2(d).

1http://xudongkang.weebly.com/data-sets.html
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Figure 3. AUC values (\%) and corresponding running times of GNBRL with different nonconvex functions
\psi for each data set.

5.2. Performance of different nonconvex functions. In this subsection, the performance
of our proposed method GNBRL for HAD under different nonconvex functions is investi-
gated. We compare eight functions, namely ``L1,"" ``Lp,"" ``MCP,"" ``Log,"" ``CapL1,"" ``CapLp,""
``CapMCP,"" ``CapLog."" Figure 3 shows the curves of the AUC values (\%) and the correspond-
ing running times for different nonconvex functions \psi . We can see from the figure that the
highest AUC values correspond to different functions \psi under different data sets. We pursue
a general surrogate for approximating low rank and sparsity, which can be flexibly chosen
according to different scenarios. This allows us to better capture the low rank structure of
the background and the sparsity of the anomaly. We can observe that the convex function L1
performs worse than all nonconvex functions in terms of AUC values. We can also observe
that the non-Cap-type functions generally perform worse than the corresponding Cap-type
functions in terms of AUC values. Among the Cap-type functions, CapL1 and CapLp achieve
relatively stable and high AUC values across different data sets, but CapLp requires more
running time. Therefore, for simplicity, we use the CapL1 function in the following experi-
ments.

5.3. Effects of the dictionary constraint. In this subsection, we evaluate the effectiveness
of dictionary constraint by comparing the restoration results obtained by TLRSR and GNBRL.
Figure 4 shows the detection maps and ROC curves obtained by TLRSR and GNBRL for
the ``Airport2"" data set. As shown in Figures 4(a)--(b), the proposed GNBRL cannot only
provide clearer maps for the anomalies than its counterparts, but also has lower test statistics
for background pixels. Figure 4(c) reports the ROC curves by TLRSR and GNBRL. It can
be observed that GNBRL achieves a higher detection probability than TLRSR for any false
alarm rate. This further validates the effectiveness of the dictionary constraint.

5.4. Effects of extrapolation strategy. In this subsection, we demonstrate the effective-
ness of the extrapolation strategy through some illustrative examples. Figure 5 shows the AUC
values (\%) versus the number of iterations for LADMM (i.e., \omega t\scrA = \omega t\scrL = 0 in ELADMM) and
ELADMM. In order to better observe the difference between them, we only display the index
transformation trends after about 16 iterations. From the figure, we can see that ELADMM
always achieves better performance with higher AUC values. Therefore, in the next section,
we use ELADMM to solve GNBRL and compare it with other methods.
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Background Anomaly

(a) TLRSR (b) GNBRL
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Figure 4. Detection maps and ROC curves obtained by TLRSR and GNBRL for the Airport2 data set,
respectively.
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Figure 5. AUC values (\%) with respect to the iteration numbers for LADMM and ELADMM.

5.5. Parameters setting. For the proposed GNBRL model, six parameters \alpha 1, \alpha 2, \alpha 3, \lambda 1,
\lambda 2, \beta affect the performance. We choose \alpha 1 = \alpha 2 = \alpha 3 = 1/3 in all experiments for simplicity
since the detection performance is stable as long as \alpha 1\alpha 2\alpha 3 \not = 0.

The performance is first compared for different values of \lambda 1 and \lambda 2. The values of \lambda 1 and
\lambda 2 are set from \{ 1e-3,5e-3,1e-2,5e-2,1e-1,5e-1,1\} . Figure 6 shows the surfaces of AUC values
in terms of different \lambda 1's and \lambda 2's. It can be observed that the change in \lambda 1 has little effect
on GNBRL. It can also be observed that the GNBRL can work stably when \lambda 1 \in [1e-3,1] and
\lambda 2 \in [5e-2,1] except for Airport2. Therefore, for simplicity, we choose \lambda 1 = 5e-1 and \lambda 2 = 5e-2
in all experiments.

Second, the performance of GNBRL for different \beta 's is investigated. For simplicity, we
set \beta t+1 = min\{ \kappa \beta t,1e8\} . We choose \beta 0 and \kappa from the sets of \{ 1e-3,5e-3,1e-2,5e-2,1e-1\} 
and \{ 1,1.3,1.5,1.7,1.9\} , respectively. For fairness, when \kappa = 1, we choose \beta 0 from the set
\{ 1e2,1e4,1e6,1e8,1e10\} . The AUC values surfaces versus different \beta 0's and \kappa 's are shown
in Figure 7. As can be seen, \kappa > 1 basically obtained a higher AUC value than \kappa = 1.
Additionally, changing \beta 0 has little effect on GNBRL. Therefore, for simplicity, we set \beta t+1 =
min\{ 1.5\beta t,1e8\} with \beta 0 = 5e-2 in all experiments.

5.6. Numerical convergence. The numerical convergence is investigated on four data
sets. Figure 8 shows an empirical analysis of the convergence of CF2-GNBRL. It can be
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(a) Airport1 (b) Airport2 (c) Urban (d) Beach

Figure 6. Surfaces of AUC values (\%) with different \lambda 1's and \lambda 2's.

(a) Airport1 (b) Airport2 (c) Urban (d) Beach

Figure 7. Surfaces of AUC values (\%) with different \beta 0's and \kappa 's.
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Figure 8. Relative change of Q= [\scrA (:);\scrL (:);\scrS (:)] with respect to the iteration numbers for CF2-GNBRL.

observed that as the number of iterations increases, the curves of the relative changes in Q
monotonically decrease, and the iteration stabilizes after 24 iterations. The convergence of
CF2-GNBRL is numerically guaranteed.

5.7. Detection performance. We evaluate and compare the detection performance of
our proposed GNBRL and CF2-GNBRL with eight other state-of-the-art detectors. Figure
9 shows the two-dimensional detection results of these methods. The results show that GN-
BRL and CF2-GNBRL can effectively detect the anomalies, and CF2-GNBRL has a stronger
background suppression effect than GNBRL. It also shows that the responses of abnormal
pixels in the detection maps from RX, RPCA, LRASR, LSMAD, and GTVLRR are lower
than those from GNBRL and CF2-GNBRL. For the TPCA method, the contrast between the
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Background Anomaly

RX RPCA LRASR LSMAD GTVLRR PTA TPCA TLRSR GNBRL CF2-GNBRL

Figure 9. Target detection results by different methods for the four data sets.
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Figure 10. ROC curves obtained by different methods for the four data sets.

background and the anomaly is not clear as this model does not compress the background
well. For PTA and TLRSR methods, the detection maps are unsatisfactory due to the complex
visualization of the background region, especially for PTA. Overall, these results demonstrate
the superiority of our proposed method.

Additionally, to quantitatively compare the performance of the proposed methods, the
ROC curves and AUC values (\%) of different methods on the four data sets are shown in
Table 1 and Figure 10, respectively. The best results for each dataset in Table 1 are highlighted
in bold. Figure 10 shows that the GNBRL method has a higher detection probability than
other methods we compare with for any false alarm rate. Moreover, the CF2-GNBRL method
further improves the detection probability compared with the GNBRL method. The detection
probabilities of the GNBRL and CF2-GNBRL methods are approximately 1 when the false
alarm rate is about 10 - 1. Furthermore, the detection probability of the GNBRL and CF2-
GNBRL methods is much higher than that of other methods when the false alarm rate is
around 10 - 2. Table 1 shows that our proposed method GNBRL achieves higher AUC values
than all the other methods we compare with. By applying the CF2 strategy, the CF2-GNBRL
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Table 1
Comparison of AUC values (\%) and running time (s) of different methods for the four data sets.

HSI Airport1 Airport2 Urban Beach

Algorithm AUC (\%) Time (s) AUC (\%) Time (s) AUC (\%) Time (s) AUC (\%) Time (s)

RX 82.21 0.42 84.03 0.41 96.92 0.41 95.39 0.04
RPCA 80.89 8.00 84.31 7.44 96.58 6.98 95.99 1.95
LRASR 77.28 53.81 86.48 70.13 92.89 47.51 95.65 104.90
LSMAD 83.39 9.54 92.17 8.60 96.05 8.74 97.06 7.65
GTVLRR 90.04 171.47 88.89 227.16 93.73 229.16 98.02 378.60
PTA 73.30 13.50 90.95 20.96 82.57 24.89 90.61 29.11
TPCA 80.22 30.91 88.90 30.62 93.69 22.15 95.82 21.71
TLRSR 90.56 3.44 94.57 3.63 97.10 3.58 95.98 5.84
GNBRL 94.75 1.60 98.00 1.50 98.38 1.91 98.03 4.01
CF2-GNBRL 96.84 27.14 98.81 31.63 98.98 31.40 99.24 83.06

method further increases the AUC values, surpassing the performance of the GNBRL method.
The AUC values obtained by CF2-GNBRL on the four data sets are 6.93\%, 4.48\%, 1.94\%,
and 3.40\% higher than TLRSR, respectively, which is the best method among all the methods
except our proposed GNBRL and CF2-GNBRL methods. In conclusion, the CF2-GNBRL
method is far superior than other methods. In addition, we report the running time of each
algorithm in Table 1. It can be observed that from the results on the Beach dataset, the
proposed GNBRL uses slightly more time compared to the RX and the RPCA methods, while
using less time than other methods. For the other three datasets, the proposed GNBRL is the
second fastest method. It is about twice as fast as the third fastest method TLRSR. However,
CF2-GNBRL consumes much more time than GNBRL because it requires processing multiple
smaller subtensors. Nevertheless, this trade-off is worthwhile for achieving better performance
in most cases. In summary, we can choose GNBRL if we prioritize speed; otherwise, we can
opt for CF2-GNBRL.

To further evaluate the performance of GNBRL and CF2-GNBRL, we use the normalized
background-anomaly separation maps to show the abilities of different methods for separat-
ing anomaly pixels from background pixels. The larger the distance between the anomalous
and background boxes, the better the separation performance. As shown in Figure 11, CF2-
GNBRL reaches the best performance because it has the largest distance between the anoma-
lous box and the background box. The background-anomaly separation of GNBRL is close to
that of CF2-GNBRL, which achieves the second best performance. The conclusions obtained
by Figure 11 are also consistent with those obtained by Figures 9 and 10 and Table 1, and
all these demonstrate that both our GNBRL method and the CF2 strategy are effective in
improving the detection performance.

6. Conclusions and future work. In this paper, we have proposed a novel GNBRL model
for HAD. In our model, through 3DCTV regularization, the background representation learn-
ing model with dictionary constraint is adopted. Then, a class of nonconvex functions is
employed on low rank and sparse terms, respectively. An error bound of the GNBRL model
is established. Moreover, an ELADMM algorithm is developed to solve the GNBRL model
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Figure 11. Separability maps of different methods for the four data sets.

and its convergence is established. Finally, a general and easily implementable coarse to fine
framework called CF2 is designed, which can effectively boost the performance of the GN-
BRL model. The experimental results on different HSI datasets demonstrate the superior
performance of our proposed methods.

The CF2-GNBRL model is a robust and accurate anomaly detection method for various
HSI tasks and data, such as target detection, material identification, and environmental mon-
itoring. In the future, it would be of great interest to improve the efficiency of CF2 strategy.
Although the CF2 strategy is helpful in improving performance, it requires solving the model
many times, which results in a significant reduction in efficiency. Therefore, developing an
efficient method similar to the CF2 strategy is necessary.

Appendix A. Preliminaries of tensors. In Appendix A, we give some definitions of tensors
used throughout this paper.

Definition A.1 (f-diagonal tensor [25]). A tensor is called f-diagonal if each of its corre-
sponding frontal slices is a diagonal matrix.
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Definition A.2 (conjugate transpose [25]). The conjugate transpose of a tensor \scrX \in \BbbR n1\times n2\times n3

is the tensor \scrX H \in \BbbR n2\times n1\times n3 obtained by conjugate transposing each of the corresponding
frontal slices and then reversing the order of the resulting transposed frontal slices 2 through n3.

Definition A.3 (identity tensor [25]). The identity tensor \scrI \in \BbbR n\times n\times n3 is the tensor whose
first frontal slice is the n\times n identity matrix, and the remaining frontal slices are all zeros.

Definition A.4 (orthogonal tensor [25]). An orthogonal tensor \scrX \in \BbbR n\times n\times n3 is a tensor that
satisfies the following condition: \scrX H \ast \scrX =\scrX \ast \scrX H = \scrI .

Appendix B. Proximal mapping. The proximal operator of z with respect to \psi is defined
as

prox\lambda \psi (z) := argmin
x

\lambda \psi (x) +
1

2
(x - z)2.

For the specific forms of the nonconvex functions \psi stated in Theorem 3.2, the proximal
mappings often have analytical expressions, which we summarize as follows:

\bullet L1: the proximal mapping of \psi \mathrm{L}1(x) is given by [46]

prox\lambda \psi \mathrm{L}1(z) := sign(z)max\{ | z|  - \lambda ,0\} .

\bullet Lp: for any 0< p< 1, the proximal mapping of \psi \mathrm{L}\mathrm{p} (x) is given by [32]

prox\lambda \psi \mathrm{L}\mathrm{p}(z) :=

\left\{     
0 if | z| <\pi 2,
\{ 0, sgn(z)\pi 1\} if | z| = \pi 2,

sgn(z)\pi  \star if | z| >\pi 2,

where \pi 1 = (2\lambda (1  - p))
1

2 - p , \pi 2 = \pi 1 + \lambda p\pi p - 1
1 , and \pi  \star \in (\pi 1, | z| ) is the solution of

g(\pi ) = \pi + \lambda p\pi p - 1  - | z| = 0 with \pi > 0.
\bullet MCP: for any \alpha > 0, the proximal mapping of \psi \mathrm{M}\mathrm{C}\mathrm{P}(x) is given by [60]

prox\lambda \psi \mathrm{M}\mathrm{C}\mathrm{P}(z) :=

\left\{     
0 if | z| \leqslant \lambda ,
\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(z)(| z|  - \lambda )

1 - \lambda /\alpha if \lambda < | z| \leqslant \alpha ,

z if | z| >\alpha .

\bullet Logarithm: for any \theta > 0, the proximal mapping of \psi \mathrm{L}\mathrm{o}\mathrm{g}(x) is given by [14]

prox\lambda \psi \mathrm{L}\mathrm{o}\mathrm{g}(z) := sign(z)y,

where y is an optimal solution of the problem y= argminx\in \frakC \{ \lambda \psi \mathrm{L}\mathrm{o}\mathrm{g}(x) + 1
2(x - z)2\} ,

and \frakC is a set composed of 3 elements or 1 element. If a := (| z|  - \theta )2 - 4(\lambda  - \theta | z| )\geqslant 0,

\frakC = \{ 0,max\{ | z|  - \theta +
\surd 
a

2 ,0\} ,max\{ | z|  - \theta  - 
\surd 
a

2 ,0\} \} , otherwise, \frakC = \{ 0\} .

\bullet Capped folded functions: for \psi \mathrm{C}\mathrm{a}\mathrm{p}(x) :=

\Biggl\{ 
c\psi (x) if0\leq x< v,

c0 ifx\geq v
with c0, c > 0, and

c\psi (v) = c0. The proximal mapping of \psi \mathrm{C}\mathrm{a}\mathrm{p}(x) is given by [36]

prox\lambda \psi \mathrm{C}\mathrm{a}\mathrm{p}(z) :=

\Biggl\{ 
u1 if \psi \mathrm{C}\mathrm{a}\mathrm{p} (u1) +

1
2 (u1  - z)2 \leq \psi \mathrm{C}\mathrm{a}\mathrm{p} (u2) +

1
2 (u2  - z)2 ,

u2 otherwise .

Here u1 =min\{ max\{ proxc\lambda \psi (z),0\} , v\} and u2 =max\{ z, v\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

2/
24

 to
 1

24
.2

33
.1

.1
64

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



946 QUAN YU AND MINRU BAI

Lemma B.1 (see [38]). Let us consider a tensor \scrZ \in \BbbR n1\times n2\times n3, which has t-SVD \scrZ =
\scrU \ast \scrF \ast \scrV H . Then the solutions \scrX  \star to the problem

min
\scrX 

\lambda \| \scrX \| \psi +
1

2
\| \scrX  - \scrZ \| 2F(B.1)

are

\scrX  \star =prox\lambda \| \cdot \| 
\psi 
(\scrZ ) := \scrU \ast \scrD \ast \scrV H ,

where \scrD is an f-diagonal tensor and \=D
(k)
i,i =prox\lambda \psi ( \=F

(k)
i,i ).

Appendix C. Proof of Theorem 3.9. Before we prove Theorem 3.9, we first present some
lemmas.

Lemma C.1. Concavity of \psi (x) and \psi (0) = 0 means its subadditivite.

Proof. For x1 \geq 0 and x2 \geq 0, concavity implies

\psi (x1) =\psi 

\biggl( 
x1

x1 + x2
(x1 + x2) +

x2
x1 + x2

\cdot 0
\biggr) 
\geq x1
x1 + x2

\psi (x1 + x2) +
x2

x1 + x2
\psi (0)

and

\psi (x2) =\psi 

\biggl( 
x2

x1 + x2
(x1 + x2) +

x1
x1 + x2

\cdot 0
\biggr) 
\geq x2
x1 + x2

\psi (x1 + x2) +
x1

x1 + x2
\psi (0).

Then,

\psi (x1) +\psi (x2)\geq \psi (x1 + x2) +\psi (0) =\psi (x1 + x2).

Lemma C.2 (see [41, Theorem 1]). Suppose that B and S are two same-sized matrices and
that \psi satisfies Assumption 3.1. Then \| B + S\| \psi \leq \| B\| \psi + \| S\| \psi .

Then we proceed to prove Theorem 3.9.

Proof. (1) Denote \scrL =\scrB  - \scrS . By Lemma C.2, we obtain that

\| \scrB \| \psi = \| \scrL + \scrS \| \psi =

n3\sum 
k=1

1

n3

\bigm\| \bigm\| \bigm\| \=L(k) + \=S(k)
\bigm\| \bigm\| \bigm\| 
\psi 
\leq 

n3\sum 
k=1

1

n3

\bigm\| \bigm\| \bigm\| \=L(k)
\bigm\| \bigm\| \bigm\| 
\psi 
+

n3\sum 
k=1

1

n3

\bigm\| \bigm\| \bigm\| \=S(k)
\bigm\| \bigm\| \bigm\| 
\psi 
= \| \scrL \| \psi + \| \scrS \| \psi ,

which implies that \| \scrB  - \scrS \| \psi \geq \| \scrB \| \psi  - \| \scrS \| \psi . Thus, we complete the proof of statement (1).
(2) According to the definition of \| \cdot \| \ell \psi F,1 , we have

\| \scrB  - \scrS \| \ell \psi F,1 =
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrB (i, j, :) - \scrS (i, j, :)\| F )\leq 
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrB (i, j, :)\| F + \| \scrS (i, j, :)\| F )

\leq 
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrB (i, j, :)\| F ) +
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrS (i, j, :)\| F ) = \| \scrB \| \ell \psi F,1 + \| \scrS \| \ell \psi F,1 ,
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HYPERSPECTRAL ANOMALY DETECTION 947

where the first inequality follows from the triangle inequality of \| \cdot \| F , the second inequality
follows from the fact that \psi is a subadditive function, as shown by using Lemma C.1. Hence,
we establish result (2) in this lemma.

(3) From the definition of \| \cdot \| \ell \psi F,1 , one has

\| \scrB \| \ell \psi F,1 =
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrB (i, j, :)\| F )\geq \psi 

\left(  n1\sum 
i=1

n2\sum 
j=1

\| \scrB (i, j, :)\| F

\right)  \geq \psi (\| \scrB \| F )(C.1)

and

\| \scrB \| \ell \psi F,1 =
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrB (i, j, :)\| F )\leq 
n1\sum 
i=1

n2\sum 
j=1

\psi (\| \scrB (i, j, :)\| 1)\leq 
n1\sum 
i=1

n2\sum 
j=1

n3\sum 
k=1

\psi (| \scrB ijk| ) = \| \scrB \| \psi ,1 ,

(C.2)

where the first inequality of (C.1) and the second inequality of (C.2) come from the fact that
\psi is a subadditive function, a result of Lemma C.1, and the last inequality of (C.1) is based
on the triangle inequality of \| \cdot \| F .
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