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Abstract
Anomaly detection in the hyperspectral images, which aims to separate
interesting sparse anomalies from backgrounds, is a significant topic in remote
sensing. In this paper, we propose a generalized nonconvex background rep-
resentation learning with dictionary constraint (GNBRL) model for hyperspectral
anomaly detection. Unlike existing methods that use a specific nonconvex func-
tion for a low rank term, GNBRL uses a class of nonconvex functions for
both low rank and sparse terms simultaneously, which can better capture
the low rank structure of the background and the sparsity of the anomaly. In ad-
dition, GNBRL simultaneously learns the dictionary and anomaly tensor
in a unified framework by imposing a three-dimensional correlated total vari-
ation constraint on the dictionary tensor to enhance the quality of represen-
tation. An extrapolated linearized alternating direction method of multipliers
(ELADMM) algorithm is then developed to solve the proposed GNBRL model. Fi-
nally, a novel coarse to fine two-stage framework is proposed to enhance
the GNBRL model by exploiting the nonlocal similarity of the hyperspectral data.
Theoretically, we establish an error bound for the GNBRL model and show that
this error bound can be superior to those of similar models based on Tucker
rank. We prove that the sequence generated by the proposed ELADMM algo-
rithm converges to a Karush-Kuhn-Tucker point of the GNBRL model. This is a
challenging task due to the nonconvexity of the objective function. Experiments
on hyperspectral image datasets demonstrate that our proposed method outper-
forms several state-of-the-art methods in terms of detection accuracy. Code at
https://github.com/quanyumath/CF2-GNBRL.

Theoretical results
Error bound: Let

(
L♮,S♮

)
be the pair of true low rank and sparse tensors,

and (A⋆,L⋆,S⋆) be an optimal solution to the optimization problem (2). As-
sume that A⋆ satisfies ψ-RTEC(s), X = A⋆ ∗ L♮ + S♮,

∥∥∥L♮
∥∥∥
ψ

≤ ∥L⋆∥ψ := s, and
λ2 > λ1rϑψr,s with r = min {n1,n2}. Then we have

ψ
(∥∥∥S♮ − S⋆

∥∥∥
F

)
≤

∥∥∥S♮ − S⋆
∥∥∥
ℓψF,1

≤
2λ2

∥∥∥S♮
∥∥∥
ℓψF,1

λ2 − λ1rϑψr,s
, (1)

where ϑψr,s is a constant that depends on r, s, ψ.
The low rank property of L♮ and the sparsity of S♮ are both positively
correlated with ϑψr,s and

∥∥∥S♮
∥∥∥
ℓψF,1
, which, in turn, are positively related

to the error bound. Thus, the lower the rank of L♮ and the sparser
S♮ is, the smaller the error bound.
Convergence analysis: Let

{
St,At, Ctu,Lt, T t

u
}
be a sequence generated by

ELADMM Algorithm. Suppose that the sequence
{
At,Lt

}∞

t=1
is bound. Then

any accumulation point of the sequence
{
St,At, Ctu,Lt, T t

u
}
is a Karush-Kuhn-

Tucker (KKT) point of the following optimization problem:

min
3∑

u=1
αu ∥Cu∥ψ + λ1 ∥L∥ψ + λ2 ∥S∥ℓψF,1 + βf (A,L,S) , s.t. Cu = ∇uA, u ∈ [3].

Generalized nonconvex model with dictionary
constraint

Our GNBRL model is formulated as:
min

A,L,S

3∑
u=1

αu ∥∇uA∥ψ︸ ︷︷ ︸
dictionary constraint

+ λ1 ∥L∥ ψ︸︷︷︸
generalized nonconvex

+ λ2 ∥S∥ℓψF,1

s.t. X = A ∗ L + S.

(2)

Other Models Our Method
Dictionary

Construction Utilizes prebuilt dictionaries Simultaneous dictionary
construction and anomaly detection

Nonconvex
Approximation

Specific nonconvex approximation
for low rank

Generalized nonconvex approximation
for both low rank and sparsity

ELADMM Algorithm to solve GNBRL

Input: The tensor data X , parameters {αu}3u=1, λ1, λ2, β.
While not converge do

Step 1. Update St+1.
Step 2. Let Ât = At + ωtA

(
At − At−1).

Step 3. Update At+1.
Step 4. Update Ct+1u .
Step 5. Let L̂t = Lt + ωtL

(
Lt − Lt−1).

Step 6. Update Lt+1.
Step 7. Update multipliers T t+1

u and penalty
parameters βt+1u .

Let t := t + 1 and go to Step 1.
end while
Output: St+1, At+1, Lt+1.

CF2 framework for GNBRL

Coarse stage: A coarse anomaly S̃ is obtained by
applying the GNBRL model to the whole HSI.
Fine stage: We first divide the whole HSI into N patches
third order sub-tensors according to BM3D. Then we
apply the GNBRL model to each sub-tensor to obtain
Ŝ1
patch, Ŝ2

patch, . . . , ŜN
patch. Next, we divide S̃ into N patches

following the partitions employed in the current fine
stage to obtain S̃1

patch, S̃2
patch, . . . , S̃N

patch. Finally, we obtain
S⋆ by

S⋆,l
patch =


S̃ l
patch, if gap

(
S̃ l
patch, Ŝ l

patch

)
< ϱ,

Ŝ l
patch, if gap

(
S̃ l
patch, Ŝ l

patch

)
≥ ϱ.

(3)

Experiments & Results
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Figure 1. Pseudo-color images of the four HSIs data sets.
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Figure 2. Target detection results by different methods for the four data sets.

HSI Airport1 Airport2 Urban Beach
Algorithm AUC (%) Time (s) AUC (%) Time (s) AUC (%) Time (s) AUC (%) Time (s)

RX 82.21 0.42 84.03 0.41 96.92 0.41 95.39 0.04
RPCA 80.89 8.00 84.31 7.44 96.58 6.98 95.99 1.95
LRASR 77.28 53.81 86.48 70.13 92.89 47.51 95.65 104.90
LSMAD 83.39 9.54 92.17 8.60 96.05 8.74 97.06 7.65
GTVLRR 90.04 171.47 88.89 227.16 93.73 229.16 98.02 378.60
PTA 73.30 13.50 90.95 20.96 82.57 24.89 90.61 29.11
TPCA 80.22 30.91 88.90 30.62 93.69 22.15 95.82 21.71
TLRSR 90.56 3.44 94.57 3.63 97.10 3.58 95.98 5.84
GNBRL 94.75 1.60 98.00 1.50 98.38 1.91 98.03 4.01

CF2-GNBRL 96.84 27.14 98.81 31.63 98.98 31.40 99.24 83.06

Table 1. Comparison of AUC values (%) and running time (s) of different methods.
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(b) Airport2
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(c) Urban
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(d) Beach

Figure 3. ROC curves obtained by different methods.
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Figure 4. Separability maps of different methods.
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