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Abstract Theoretical results

Anomaly detection in the hyperspectral images, which aims to separate Error bound: Let ([ﬁ,Sh) be the pair of true low rank and sparse tensors,
interesting sparse anomalies from backgrounds, is a significant topic in remote and (A* £*, S*) be an optimal solution to the optimization problem (2). As-
sensing. In this paper, we propose a generalized nonconvex background rep- sume that A* satisfies ¢-RTEC(s), X = A* « £ + S, HﬁhH < [[£*]], = s, and
resentation learning with dictionary constraint (GNBRL) model for hyperspectral v
anomaly detection. Unlike existing methods that use a specific nonconvex func-
tion for a low rank term, GNBRL uses a class of nonconvex functions for 2>\2‘
both low rank and sparse terms simultaneously, which can better capture (st =s,) <[5t -8, < o

. F1 Ay — A1y
the low rank structure of the background and the sparsity of the anomaly. In ad- ’
dition, GNBRL simultaneously learns the dictionary and anomaly tensor Where ¥} is a constant that depends onr, s, v.

in a unified framework by imposing a three-dimensional correlated total vari- +ha low rank oroperty of £’ and the sparsity of S are both positively
ation constraint on the dictionary tensor to enhance the quality of represen- . alated with 9. and HS which, in turn, are positively related
tation. An extrapolated linearized alternating direction method of multipliers e k) ’ ’

(ELADMM) algorithm is then developed to solve the proposed GNBRL model. Fi- tO _the error bound. Thus, the lower the rank of £ and the sparser
nally, a novel coarse to fine two-stage framework is proposed to enhance S" is, the smaller the error bound.

the GNBRL model by exploiting the nonlocal similarity of the hyperspectral data. Convergence analysis: Let {St At ot rt Tt} be a sequence generated by
Theoretically, we establish an error bound for the GNBRL model and show that | R RS
ELADMM Algorithm. Suppose that the sequence {A , L }t 1S bound. Then

this error bound can be superior to those of similar models based on Tucker =

rank. We prove that the sequence generated by the proposed ELADMM algo- any accumulation point of the sequence {St, AL, ¢, LY, Tut} s a Karush-Kuhn-
rithm converges to a Karush-Kuhn-Tucker point of the GNBRL model. This is a Tucker (KK ) point of the following optimization problem:

challenging task due to the nonconvexity of the objective function. Experiments

on hyperspectral image datasets demonstrate that our proposed method outper- min Z ay ||Cull, + A1 [I£][, + Az HSHW +Bf(AL,S), st Cu=VyA uel3]
forms several state-of-the-art methods in terms of detection accuracy. Code at u=1

https://github.com/quanyumath/CF2-GNBRL.

Xy > A\rdys with r=min {n1,n,}. Then we have

(1)
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A LS u=1 P generalized no\zéc/onvex b (2) Figure 1. Pseudo-color images of the four HSIs data sets.

dictionary constraint

Anomaly
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Other Models Our Method
Simultaneous dictionary
construction and anomaly detection
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Utilizes prebuilt dictionaries

ELADMM Algorithm to solve GNBRL

Input: The tensor data X', parameters {au}f’,:l, A1, A2, .

While not converge do
Ste D 1. U pd ate S t+1 Figure 2. Target detection results by different methods for the four data sets.

Step 2. Let Al = At wh (AF— AL,

HSI Airportl Airport2 Urban Beach

t+1
Step 3. Update A™"-. Algorithm AUC (%) Time (s) AUC (%) Time (s) AUC (%) Time (s) AUC (%) Time (s)
Step 4. Update ;™. A 5085 500 Ba31 745 9656 698 9599 195
Step 5. Let £ = L' +u) (L= L), LRASR  77.28 53.81 86.48 70.13 92.89 4751 9565 104.90
Step 6. Update £, [SMAD  83.39 954 9217 860 96.05 874 97.06 7.65
T £l GTVLRR  90.04 171.47 88.89 227.16 93.73 229.16 98.02 378.60
Step 7. Ufﬁate multipliers 7,7 and penalty PTA 73.30  13.50 90.95 2096 82.57 24.80 90.61 29.11
parameters Bu : TPCA 80.22 3091 88.90 30.62 93.69 22.15 95.82 21.71
let = t 1 and go to Step 1. TLRSR 90.56 3.44 94.57 3.63 97.10 3.58 95.98 5.84
d whil GNBRL  94.75 1.60 98.00 1.50 98.38 1.91 98.03 4.0l
ena wniie CF2-GNBRL 96.84 27.14 98.81 31.63 98.98 31.40 99.24 83.06

Output: St AHL £t

Table 1. Comparison of AUC values (%) and running time (s) of different methods.
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- Coarse stage: A coarse anomaly S is obtained by
applying the GNBRL model to the whole HSI.

- Fine stage: We first divide the whole HSI into N patches T
third order sub-tensors according to BM3D. Then we (a) Airportl (b) Airport2 (c) Urban (d) Beach
apply the GNBRL model to each sub-tensor to obtain Figure 3. ROC curves obtained by different methods.
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Figure 4. Separability maps of different methods.
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