
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-023-02287-0

Tensor Factorization-Based Method for Tensor Completion
with Spatio-temporal Characterization

Quan Yu1 · Xinzhen Zhang2 · Zheng-Hai Huang2

Received: 19 August 2021 / Accepted: 9 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we propose a novel tensor factorization-based method for the third-order
tensor completion problem with spatio-temporal characterization. For this aim, we
consider tensor fibered rank, which extends tubal rank, to improve the flexibility and
accuracy of data characterization. Based on this rank, we apply a factorization-based
method to complete the third-order low-rank tensors with spatio-temporal character-
istics, which are intrinsic features of image, video and internet traffic tensor data. The
model not only makes good use of the low-rank structure of tensors, but also takes into
account the spatio-temporal characteristics of the data. Finally, we report numerical
results on completing image, video and internet traffic data. The results demonstrate
that our method outperforms some existing methods.
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1 Introduction

A tensor is a multidimensional array, and an N th-order tensor is an element of the
tensor product space of N vector spaces, each with its own dimension [19]. Tensors,
as higher-order generalizations of vectors and matrices, have wide applications in
various fields [4, 8–10, 15, 21, 23, 27, 31, 36, 42]. Tensor decompositions, which are
various generalizations of matrix singular value decomposition, have attracted more
andmore attention, including CANDECOMP/PARAFAC (CP) decomposition [7, 16],
Tucker decomposition [35] and tensor singular value decomposition (SVD) [11, 13,
17, 18, 28]. Corresponding to such tensor decompositions, tensor ranks are called the
CP rank, Tucker rank and tubal rank, respectively.

Third-order tensors are widely used in chemometrics [6, 30], psychometrics [20]
and image inpainting [5, 24, 26, 48]. Unless otherwise specified, tensors in this
paper are of third-order tensors. For a third-order (n1, n2, n3)-dimensional tensor
C ∈ R

n1×n2×n3 , the CP decomposition is to decompose C as a sum of some outer
products of three vectors:

C =
r∑

i=1

a(i)
1 ◦ a(i)

2 ◦ a(i)
3 ,

where the symbol “◦” denotes the outer product and a(i)
j ∈ R

n j is a vector (i ∈
{1, 2, . . . , r} and j ∈ {1, 2, 3}). The smallest r in CP decomposition is called CP rank
of C. From [12], it is NP-hard to determine the CP rank. Compared with CP rank,
Tucker rank is easy to compute, and hence most of low-rank tensor completion and
recovery models are based on Tucker rank. Precisely, Tucker rank is a vector of the
matrix ranks:

rankTC (C) = (
rank(C(1)), rank(C(2)), rank(C(3))

)
,

whereC(1) ∈ R
n1×(n2n3) (C(2) ∈ R

n2×(n1n3) andC(3) ∈ R
n3×(n1n2)) is mode-1 (mode-

2 and mode-3, respectively) matricization of the tensor C. More recently, Kilmer et
al. [17] introduced tensor-tensor product (t-product) and tensor singular value decom-
position (t-SVD). Based on these definitions, tubal rank was introduced and studied
in [17, 18, 28]. More recently, tensor fibered rank was introduced by extending tubal
rank and studied in [46].

The low-rank tensor completion problem is to find a low-rank tensor from observed
incomplete data, which arises from various fields including internet traffic recovery [1,
2, 33, 47], image and video inpainting [14, 22, 23, 42, 48]. Low-rank tensor completion
is modeled as

min
C

rank(C), s.t. PΩ(C) = PΩ(M), (1)

where rank(·) is a tensor rank and Ω is an index set locating the observed data. PΩ is
a linear operator that extracts the entries in Ω and fills the entries not in Ω with zeros,
and M is a given tensor.
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Different tensor ranks lead to different low-rank tensor completion models of (1)
with different methods. One of them is the well-known low-Tucker-rank tensor com-
pletion of the following form:

min
C

(
rank(C(1)), rank(C(2)), rank(C(3))

)
, s.t. PΩ(C) = PΩ(M).

To keep things simple, the weighted Tucker rankminimization problems is formulated
as

min
C

3∑

i=1

αi rank(C(i)), s.t. PΩ(C) = PΩ(M). (2)

Note that problem (2) is nonconvex since the matrix rank function is nonconvex. To
solve (2), the convex optimization problem is considered as

min
C

3∑

i=1

αi
∥∥C(i)

∥∥∗, s.t. PΩ(C) = PΩ(M). (3)

In general, SVD is needed in each iteration of numerical methods for (3), which leads
to high computational cost. To lower the computational cost, a matrix factorization
method was considered by Xu et al. [40], which preserves the low-rank structure of a
matrix. Specifically, (2) is reformulated as

min
Xi ,Y i ,C

3∑

i=1

αi

∥∥∥XiY i − C(i)

∥∥∥
2

F
, s.t. PΩ(C) = PΩ(M). (4)

This method has been widely used in various areas [25]. As pointed out in [17, 18,
28], unfolding a tensor directly will destroy the original multi-way structure of the
data, which leads to vital information loss and degraded performance. Note that the
sizes of C(i), i = 1, 2, 3 in (4) are the same as C in principle, which makes it difficult
to lower the computational efforts.

Based on tubal rank, the following model was considered in [48] based on tensor
factorization:

min
X ,Y,C

1

2
‖X ∗ Y − C‖2F , s.t. PΩ(C − M) = 0, (5)

where “∗” denotes the tensor-tensor product (t-product). According to the analysis
in [17, 18, 28, 48], the t-product can be computed by some block diagonal matrices
of smaller sizes, which makes a significant reduction in computational cost. Later,
a corrected tensor nuclear norm minimization method was developed in [44] for
noisy observations. Furthermore, based on fibered rank, an efficient alternating direc-
tion method of multipliers (ADMMs)-based algorithm was proposed in hyperspectral
image (HSI) denoising [46].
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Tomake full use of the intrinsic spatio-temporal characteristics in image, video and
internet traffic tensor completion,we introduce the low-fibered-rank tensor completion
model that can better incorporate these characteristics than the tubal rankmodel. Then,
we apply a tensor factorization-based method to solve this model. As far as we know,
this paper is the first one to use priori information of spatio-temporal characteristics
for image and video data recovery. Our numerical examples show that our results have
higher peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and feature
similarity (FSIM) [43] than some existing methods, demonstrating the superiority of
our model and method.

The paper is organized as follows. Section2 presents preliminary knowledge on ten-
sor fibered rank. In Sect. 3, we introduce a low tensor fibered rank tensor completion
model for tensor data with some characteristics, and propose a tensor factorization-
based method with its convergence analysis. Section4 reports some numerical results
on color image, gray video and internet traffic data recovery, demonstrating the effi-
ciency of the proposed method. Section5 briefly concludes our study.

2 Preliminary Knowledge

Before proceeding, we first present some notations here. For a positive integer
n, [n] := {1, 2, . . . , n}. Scalars, vectors and matrices are denoted as lowercase
letters (a, b, c, . . .), boldface lowercase letters (a, b, c, . . .) and uppercase letters
(A, B,C, . . .), respectively. Third-order tensors are denoted as calligraphic letters
(A,B, C, . . .), and the set of all the third-order real tensors is denoted as Rn1×n2×n3 .
For a third-order tensor A = (Ai jk) ∈ R

n1×n2×n3 , i ∈ [n1], j ∈ [n2] and k ∈ [n3],
we use the Matlab notations A(i, :, :), A(:, j, :) and A(:, :, k) to denote its i th hori-
zontal, j th lateral and kth frontal slice, respectively. Without confusion, we use Ai jk

and A(i, j, k) to denote the (i, j, k)th entries of A. Then, we denote

A(i)
1 := A(i, :, :), A( j)

2 := A(:, j, :), A(k)
3 := A(:, :, k).

The inner product of two tensors A, B ∈ R
n1×n2×n3 is the sum of products of their

entries, i.e.,

〈A,B〉 =
n1∑

i=1

n2∑

j=1

n3∑

k=1

Ai jkBi jk .

The Frobenius norm is defined as ‖A‖F = √〈A,A〉. For a matrix A, AH and A−1

represent the conjugate transpose and the inverse of A, respectively. I represents the
identity matrix. For any u ∈ [3], the u-mode matrix product of a tensorA = (Ai jk) ∈
R
n1×n2×n3 with a matrix Mu ∈ R

J×nu is denoted by A ×u Mu with its entries

(A ×1 M1)i1 jk = ∑n1
i=1Ai jk(M1)i1i ,

(A ×2 M2)i j1k = ∑n2
j=1Ai jk(M2) j1 j ,

(A ×3 M3)i jk1 = ∑n3
k=1Ai jk(M3)k1k .
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Now we are ready to recall tensor fibered rank, which is a generalization of
tubal rank in [17]. Before proceeding, we review the Discrete Fourier Transfor-
mation (DFT), which plays a key role in t-product. For A ∈ R

n1×n2×n3 and
u ∈ [3], let Āu ∈ C

n1×n2×n3 be the result of DFT of A ∈ R
n1×n2×n3 along

the uth mode. Specifically, let Fnu = [ f1, . . . , fnu ] ∈ C
nu×nu , where fi =

[
1;ω(i−1); . . . ;ωk(i−1); . . . ;ω(nu−1)(i−1)

] ∈ C
nu with ω = e− 2πb

nu and b = √−1.
Then

Ā1(:, j, k) = Fn1A(:, j, k), Ā2(i, :, k) = Fn2A(i, :, k), Ā3(i, j, :) = Fn3A(i, j, :),

which can be computed by Matlab command “Āu = f f t(A, [ ], u)”. Furthermore,A
can be computed by Āu with the inverse DFT A = i f f t(Āu, [ ], u).

For A ∈ R
n1×n2×n3 , we define matrices Ā1 ∈ C

n1n2×n1n3 , Ā2 ∈ C
n1n2×n2n3 and

Ā3 ∈ C
n1n3×n2n3 as

Āu = bdiagu
(Āu

)

=

⎡

⎢⎢⎢⎢⎣

Ā(1)
u

Ā(2)
u

. . .

Ā(nu)
u

⎤

⎥⎥⎥⎥⎦
, ∀ u ∈ [3]. (6)

Here, bdiagu(·) is an operator which maps the tensor Āu to the block diagonal matrix
Āu . The block circulant matrices bcirc1(A) ∈ R

n1n2×n1n3 , bcirc2(A) ∈ R
n1n2×n2n3

and bcirc3(A) ∈ R
n1n3×n2n3 of A are defined as

bcircu(A) =

⎡

⎢⎢⎢⎢⎣

A(1)
u A(nu)

u · · · A(2)
u

A(2)
u A(1)

u · · · A(3)
u

...
...

. . .
...

A(nu)
u A(nu−1)

u · · · A(1)
u

⎤

⎥⎥⎥⎥⎦
, ∀ u ∈ [3].

Based on these notations, mode-k t-product, mode-k fibered rank and tensor fibered
rank were introduced in [46].

Definition 1 (Mode-k t-product) For A1 ∈ R
n1×n2×r1 and B1 ∈ R

n1×r1×n3 , define

A1 ∗1 B1 := f old1(bcirc1(A1) · un f old1(B1)) ∈ R
n1×n2×n3 .

For A2 ∈ R
n1×n2×r2 and B2 ∈ R

r2×n2×n3 , define

A2 ∗2 B2 := f old2(bcirc2(A2) · un f old2(B2)) ∈ R
n1×n2×n3 .

For A3 ∈ R
n1×r3×n3 and B3 ∈ R

r3×n2×n3 , define

A3 ∗3 B3 := f old3(bcirc3(A3) · un f old3(B3)) ∈ R
n1×n2×n3 .
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Here

un f oldu(Bu) = [B(1)
u ; B(2)

u ; . . . ; B(nu)
u ],

and its inverse operator “ f oldu” is defined by f oldu(un f oldu(Bu)) = Bu .

Definition 2 (Tensor fibered rank and mode-k fibered rank) For any tensor A ∈
R
n1×n2×n3 and u ∈ [3], let rlu = rank( Ā(l)

u ) and l ∈ [nu]. Then tensor fibered rank of
A is defined as a vector

rank f (A) = (r1(A), r2(A), r3(A)),

where ru(A) = max{r1u , r2u , . . . , rnuu } for u ∈ [3] is called the mode-k fibered rank.

For mode-k t-product, we have the following result, which is due to [18, 48].

Lemma 1 Suppose that A, B are tensors such that F := A ∗u B (u ∈ [3]) is well
defined as in Definition 1. Let Āu, B̄u, F̄u be defined as in (6) and ru(·) be defined as
in Definition 2. Then

(1) ‖A‖2F = 1
nu

∥∥ Āu
∥∥2
F;

(2) F = A∗uB and F̄u = Āu B̄u are equivalent;
(3) ru(F) ≤ min{ru(A), ru(B)}.
FromLemma1,we can assert that the generalized tensor factorization can be computed
by matrix factorization, which is computable.

3 Low-Rank Tensor Completion of Third-Order Tensors with
Spatio-temporal Characteristics

In practical applications, some characteristics of the data are included in the tensor
completion problem. For example, both the video data between the two adjacent frames
and the internet traffic data between two adjacent days have temporal stability features.
To characterize such properties, some constraint matrices are considered.

As in [32, 47], the temporal constraint matrix H captures the temporal stability
feature, i.e., the data is similar at two adjacent time slots in the tensor. Specifically, let
n3 be the time dimension and H = Toepli t z(0, 1,−1) be a Toeplitz matrix of size
(n3 − 1) × n3 with

H =

⎡

⎢⎢⎢⎣

1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

⎤

⎥⎥⎥⎦

(n3−1)×n3

.

Then the time stability is expressed by minimizing ‖C ×3 H‖2F = ∑n3−1
k=1∥∥∥∥C

(k)

3 − C(k+1)

3

∥∥∥∥
2

F

. That is, we get an approximation that has the similar temporally
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adjacent values. Similarly, let the spatial constraint matrices F and G capture spatial
correlation feature [47]. We choose F and G according to the similarity between C(i)

1

and C( j)
1 ( j �= i), C(i)

2 and C( j)
2 ( j �= i), respectively. For each C(i)

1 , we perform linear

regression to find a set of weights wi ( j) such that the linear combination of C( j)
1 is a

best approximation of C(i)
1 , i.e., C(i)

1 = ∑
j �=i wi ( j)C( j)

1 . Then we set F(i, i) = 1 and
F(i, j) = −wi ( j). Matrix G can be obtained similarly. Let n1 and n2 be the spatial
dimensions. Then the spatial correlation features can be expressed by minimizing

‖C ×1 F‖2F =
n1∑

i=1

∥∥∥∥∥∥
C (i)
1 −

∑

j �=i

wi ( j)C
( j)
1

∥∥∥∥∥∥

2

F

,

‖C ×2 G‖2F =
n2∑

i=1

∥∥∥∥∥∥
C (i)
2 −

∑

j �=i

wi ( j)C
( j)
2

∥∥∥∥∥∥

2

F

.

Before we get such matrices F and G, it is necessary to estimate an initial tensor C
without missing data and outliers because these factors may destroy spatial features.
To this end, we first recover the missing entries and remove outliers by using the
temporal constraint (i.e., H ). For the estimated tensor C, we analyze the similarities
and linear regression to find spatial constraints (i.e., F, G). Then the obtained F, G
are used together with matrix H in algorithm to recovery the data.

3.1 Tensor Factorization-BasedMethod

Consider the following low-rank tensor completion model based on tensor fibered
rank

min
C

rank f (C), s.t. PΩ(C − M) = 0.

Based on mode-k t-product, the low tensor fibered rank completion model can be
approximated by

min
Xu ,Yu ,C

3∑

u=1

αu

2
‖Xu∗uYu − C‖2F , s.t. PΩ(C − M) = 0.

For the three suitable matrices F, G and H , we propose a low-rank tensor
completion model for tensor data with spatio-temporal characteristics using tensor
factorization:
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min
Xu ,Yu ,C

3∑

u=1

αu

2
‖Xu∗uYu − C‖2F + β1

2
‖(X2∗2Y2) ×1F‖2F + β2

2
‖(X3∗3Y3)×2G‖2F

+β3

2
‖(X1∗1Y1)×3H‖2F

s.t. PΩ(C − M) = 0. (7)

Let βu = 0 if there are no additional characteristics on the uth dimension of data.
Now we present the following lemma, which is helpful to solve problem (7).

Lemma 2 Suppose that C ∈ R
n1×n2×n3 , F ∈ R

n1×n1, G ∈ R
n2×n2 and H ∈ R

n3×n3 .
Let F ∈ R

n1×n2×n1, F̃ ∈ R
n1×n1×n3, G ∈ R

n2×n2×n3, G̃ ∈ R
n1×n2×n2 , H ∈

R
n1×n3×n3, H̃ ∈ R

n3×n2×n3 be the tensors with their slices

F (1)
2 = F, F (2)

2 = · · · = F (n2)
2 = 0, F̃ (1)

3 = F, F̃ (2)
3 = · · · = F̃ (n3)

3 = 0,

G(1)
3 = GH , G(2)

3 = · · · = G(n3)
3 = 0, G̃(1)

1 = G, G̃(2)
1 = · · · = G̃(n1)

1 = 0,

H (1)
1 = HH , H (2)

1 = · · · = H (n1)
1 = 0, H̃ (1)

2 = HH , H̃ (2)
2 = · · · = H̃ (n2)

2 = 0.

Then

{F∗2C = C×1F,

F̃∗3C = C×1F,

{C∗3G = C×2G,

G̃∗1C = C×2G,

{C∗1H = C×3H ,

C∗2H̃ = C×3H .

Proof It is clear to see that

un f old2 (F∗2C) = bcirc2 (F) · un f old2 (C)

=

⎡

⎢⎢⎢⎢⎣

F (1)
2 F (n2)

2 · · · F (2)
2

F (2)
2 F (1)

2 · · · F (3)
2

.

.

.
.
.
.

. . .
.
.
.

F (n2)
2 F (n2−1)

2 · · · F (1)
2

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

C (1)
2

C (2)
2
.
.
.

C (n2)
2

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

F 0 · · · 0
0 F · · · 0
.
.
.

.

.

.
. . .

.

.

.

0 0 · · · F

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

C (1)
2

C (2)
2
.
.
.

C (n2)
2

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

FC (1)
2

FC (2)
2

.

.

.

FC (n2)
2

⎤

⎥⎥⎥⎥⎦
.

Then

(F∗2C)i jk =
(
FC ( j)

2

)

ik
=

n1∑

p=1

Fip
(
C ( j)
2

)

pk
=

n1∑

p=1

Cpjk Fip = (C×1F)i jk .

Similarly,

(
F̃∗3C

)

i jk
=
(
FC (k)

3

)

i j
=

n1∑

p=1

Fip
(
C (k)
3

)

pj
=

n1∑

p=1

Cpjk Fip = (C×1F)i jk .

Now we can assert that F∗2C = C×1F and F̃∗3C = C×1F .
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Furthermore,

un f old3 (C∗3G) = bcirc3 (C) · un f old3 (G)

=

⎡

⎢⎢⎢⎢⎣

C (1)
3 C (n3)

3 · · · C (2)
3

C (2)
3 C (1)

3 · · · C (3)
3

...
...

. . .
...

C (n3)
3 C (n3−1)

3 · · · C (1)
3

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

G(1)
3

G(2)
3
...

G(n3)
3

⎤

⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎣

C (1)
3 C (n3)

3 · · · C (2)
3

C (2)
3 C (1)

3 · · · C (3)
3

...
...

. . .
...

C (n3)
3 C (n3−1)

3 · · · C (1)
3

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

GH

0
...

0

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

C (1)
3 GH

C (2)
3 GH

...

C (n3)
3 GH

⎤

⎥⎥⎥⎥⎦
.

Then

(C∗3G)i jk =
(
C (k)
3 GH

)

i j
=

n2∑

p=1

(
C (k)
3

)

i p

(
GH

)

pj
=

n2∑

p=1

Ci pkG jp = (C×2G)i jk .

Similarly,

(
G̃∗1C

)

i jk
=
(
GC (i)

1

)

jk
=

n2∑

p=1

(G) j p

(
C (i)
1

)

pk
=

n2∑

p=1

Ci pkG jp = (C×2G)i jk .

Then C∗3G = C×2G and G̃∗1C = C×2G. Similarly, C∗1H = C×3H and C∗2H̃ =
C×3H . Hence the desired results are arrived. �


With Lemma 2, (7) can be rewritten as

min
Xu ,Yu ,C

3∑
u=1

αu
2 ‖Xu∗uYu − C‖2F + β1

2 ‖F∗2 (X2∗2Y2)‖2F + β2
2 ‖(X3∗3Y3) ∗3G‖2F

+β3
2 ‖(X1∗1Y1) ∗1H‖2F

s.t. PΩ(C − M) = 0.

(8)

To ascertain the factors without scaling, additional regularized terms are added in the
objective function, denoted by f (C,X1,X2,X3,Y1,Y2,Y3). Consider the following
regularized version of problem (8)

min
C,Xu ,Yu

f (C,X1,X2,X3,Y1,Y2,Y3), s.t. PΩ(C − M) = 0, (9)
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where

f (C,X1,X2,X3,Y1,Y2,Y3)

=
3∑

u=1

αu

2
‖Xu∗uYu − C‖2F + β1

2
‖F∗2 (X2∗2Y2)‖2F + β2

2
‖(X3∗3Y3) ∗3G‖2F

+ β3

2
‖(X1∗1Y1) ∗1H‖2F

+ λ

2

(
β1‖F ∗2 X2‖2F + α2‖X2‖2F + ‖Y2‖2F

)

+ λ

2

(
‖X3‖2F + β2‖Y3 ∗3 G‖2F + α3‖Y3‖2F

)

+ λ

2

(
‖X1‖2F + β3‖Y1 ∗1 H‖2F + α1‖Y1‖2F

)
.

Now we update C,Xu,Yu alternatively. Note that

3∑

u=1

αu ‖Xu∗uYu − C‖2F =
3∑

u=1

αu 〈Xu∗uYu − C,Xu∗uYu − C〉

=
3∑

u=1

αu 〈C, C〉 − 2
3∑

u=1

αu 〈Xu∗uYu , C〉 +
3∑

u=1

αu 〈Xu∗uYu ,Xu ∗u Yu〉

= 〈C, C〉 − 2

〈
3∑

u=1

αuXu∗uYu , C
〉

+
3∑

u=1

αu ‖Xu∗uYu‖2F

=
〈

3∑

u=1

αuXu∗uYu − C,

3∑

u=1

αuXu∗uYu − C
〉

+
3∑

u=1

αu ‖Xu∗uYu‖2F −
∥∥∥∥∥

3∑

u=1

αuXu∗uYu

∥∥∥∥∥

2

F

=
∥∥∥∥∥

3∑

u=1

αuXu∗uYu − C
∥∥∥∥∥

2

F

+
3∑

u=1

αu ‖Xu∗uYu‖2F −
∥∥∥∥∥

3∑

u=1

αuXu∗uYu

∥∥∥∥∥

2

F

. (10)

Then Ct+1 can be updated by

Ct+1 = argmin
PΩ(C−M)=0

1

2

∥∥∥∥∥

3∑

u=1

αuX t
u∗uY t

u − C
∥∥∥∥∥

2

F

=
3∑

u=1

αuX t
u∗uY t

u + PΩ

(
M −

3∑

u=1

αuX t
u∗uY t

u

)
. (11)

Before we present how to updateX t+1
u andY t+1

u , we rewrite (9) as a corresponding

matrix version. Denote ru := ru(C), rlu := rank(C̄ (l)
u ) with C̄ (l)

u ∈ C
nu1×nu2 , u1 < u2

and u1, u2 �= u. Clearly, rlu ≤ ru for all l ∈ [nu]. For each u and l, C̄ (l)
u can be factorized

as a product of two matrices X̂ (l)
u and Ŷ (l)

u of smaller sizes, where X̂ (l)
u ∈ C

nu1×rlu

and Ŷ (l)
u ∈ C

rlu×nu2 are the lth block diagonal matrices of X̂u ∈ C
nu1nu×

(∑nu
l=1 r

l
u
)
and
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Ŷu ∈ C

(∑nu
l=1 r

l
u
)×nunu2 . Let X̄ (l)

u = [X̂ (l)
u , 0] ∈ C

nu1×ru , Ȳ (l)
u = [Ŷ (l)

u ; 0] ∈ C
ru×nu2 and

X̄u, Ȳu be the block diagonal matrices with the lth block diagonal matrices X̄ (l)
u , Ȳ (l)

u ,
respectively. Then X̂uŶu = X̄uȲu . Together with Lemma 1, we have

‖F ∗2 (X2 ∗2 Y2)‖2F = 1

n2
‖F̄2(X2 ∗2 Y2)‖2F = 1

n2
‖F̄2

(
X̄2Ȳ2

) ‖2F

= 1

n2
‖F̄2

(
X̂2Ŷ2

)
‖2F = 1

n2
‖F̄2 X̂2Ŷ2‖2F = 1

n2

n2∑

j=1

∥∥∥F̄ ( j)
2 X̂ ( j)

2 Ŷ ( j)
2

∥∥∥
2

F
.

Similarly, we have

‖(X3∗3Y3) ∗3G‖2F = 1

n3

n3∑

k=1

∥∥∥X̂ (k)
3 Ŷ (k)

3 Ḡ(k)
3

∥∥∥
2

F
,

‖(X1∗1Y1) ∗1H‖2F = 1

n1

n1∑

i=1

∥∥∥X̂ (i)
1 Ŷ (i)

1 H̄ (i)
1

∥∥∥
2

F
.

Based on these results, we can rewrite (9) as the following matrix version:

min
C,X̂u ,Ŷu

nu∑

l=1

αu

2nu

∥∥∥X̂ (l)
u Ŷ (l)

u − C̄ (l)
u

∥∥∥
2

F
+ β1

2n2

n2∑

j=1

∥∥∥F̄ ( j)
2 X̂ ( j)

2 Ŷ ( j)
2

∥∥∥
2

F

+ β2

2n3

n3∑

k=1

∥∥∥X̂ (k)
3 Ŷ (k)

3 Ḡ(k)
3

∥∥∥
2

F
+ β3

2n1

n1∑

i=1

∥∥∥X̂ (i)
1 Ŷ (i)

1 H̄ (i)
1

∥∥∥
2

F

+ λ

⎛

⎝ β1

2n2

n2∑

j=1

∥∥∥F̄ ( j)
2 X̂ ( j)

2

∥∥∥
2

F
+ α2

2n2

n2∑

j=1

∥∥∥X̂ ( j)
2

∥∥∥
2

F
+ 1

2n2

n2∑

j=1

∥∥∥Ŷ ( j)
2

∥∥∥
2

F

⎞

⎠

+ λ

(
1

2n3

n3∑

k=1

∥∥∥X̂ (k)
3

∥∥∥
2

F
+ β2

2n3

n3∑

k=1

∥∥∥Ŷ (k)
3 Ĝ(k)

3

∥∥∥
2

F
+ α3

2n3

n3∑

k=1

∥∥∥Ŷ (k)
3

∥∥∥
2

F

)

+ λ

(
1

2n1

n1∑

i=1

∥∥∥X̂ (i)
1

∥∥∥
2

F
+ β3

2n1

n1∑

i=1

∥∥∥Ŷ (i)
1 H̄ (i)

1

∥∥∥
2

F
+ α1

2n1

n1∑

i=1

∥∥∥Ŷ (i)
1

∥∥∥
2

F

)
.

To update X̂ (i,t+1)
1 , we consider its regularized version and have X̂ (i,t+1)

1 as follows:

X̂ (i,t+1)
1 = argmin

X̂ (i)
1

α1

2n1

∥∥∥X̂ (i)
1 Ŷ (i,t)

1 − C̄ (i,t+1)
1

∥∥∥
2

F
+ β3

2n1

∥∥∥X̂ (i)
1 Ŷ (i,t)

1 H̄ (i)
1

∥∥∥
2

F
+ λ

2n1

∥∥∥X̂ (i)
1

∥∥∥
2

F

= α1C̄
(i,t+1)
1

(
Ŷ (i,t)
1

)H [
α1Ŷ

(i,t)
1

(
Ŷ (i,t)
1

)H + β3

(
Ŷ (i,t)
1 H̄ (i)

1

) (
Ŷ (i,t)
1 H̄ (i)

1

)H + λI

]−1

.

(12)
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Similarly, Ŷ (i,t+1)
1 can be updated by

Ŷ (i,t+1)
1 = argmin

Ŷ (i)
1

α1

2n1

∥∥∥X̂ (i,t+1)
1 Ŷ (i)

1 − C̄ (i,t+1)
1

∥∥∥
2

F
+ β3

2n1

∥∥∥X̂ (i,t+1)
1 Ŷ (i,t)

1 H̄ (i)
1

∥∥∥
2

F

+ λβ3

2n1

∥∥∥Ŷ (i)
1 H̄ (i)

1

∥∥∥
2

F
+ λα1

2n1

∥∥∥Ŷ (i)
1

∥∥∥
2

F

= α1

[(
X̂ (i,t+1)
1

)H
X̂ (i,t+1)
1 + λI

]−1(
X̂ (i,t+1)
1

)H
C̄ (i,t+1)
1

[
α1 I + β3 H̄

(i)
1

(
H̄ (i)
1

)H]−1

.

(13)

Similarly, X̂ ( j,t+1)
2 , Ŷ ( j,t+1)

2 , X̂ (k,t+1)
3 , Ŷ (k,t+1)

3 can be updated by

X̂ ( j,t+1)
2 = α2

[
α2 I + β1

(
F̄ ( j)
2

)H
F̄ ( j)
2

]−1

C̄ ( j,t+1)
2

(
Ŷ ( j,t)
2

)H[
Ŷ ( j,t)
2

(
Ŷ ( j,t)
2

)H + λI

]−1

, (14)

Ŷ ( j,t+1)
2 =

[
α2

(
X̂ ( j,t+1)
2

)H
X̂ ( j,t+1)
2 + β1

(
F̄ ( j)
2 X̂ ( j,t+1)

2

)H
F̄ ( j)
2 X̂ ( j,t+1)

2 + λI

]−1

α2

(
X̂ ( j,t+1)
2

)H
C̄ ( j,t+1)
2 , (15)

X̂ (k,t+1)
3 = α3C̄

(k,t+1)
3

(
Ŷ (k,t)
3

)H

[
α3Ŷ

(k,t)
3

(
Ŷ (k,t)
3

)H + β2

(
Ŷ (k,t)
3 Ḡ(k)

3

) (
Ŷ (k,t)
3 Ḡ(k)

3

)H + λI

]−1

, (16)

and

Ŷ (k,t+1)
3 = α3

[(
X̂ (k,t+1)
3

)H
X̂ (k,t+1)
3 + λI

]−1(
X̂ (k,t+1)
3

)H
C̄ (k,t+1)
3

[
α3 I + β2Ḡ

(k)
3

(
Ḡ(k)

3

)H]−1

.

(17)

Based on above analysis, the alternating minimization method can be outlined as
Algorithm 3.1, denoted by STTF for convenience.

Remark 1 In general, we do not know the true tensor fibered rank of optimal ten-
sor C in advance. Thus, it is necessary to estimate the tensor fibered rank of tensor
C. In this paper, we adopt the same rank estimation and rank decreasing strat-
egy proposed in [38, 40, 48]. Similar to [38, 40], we adopt the rank decreasing
method to estimate the true rank of a tensor. For the ease of the reader, we present
the strategy here. Suppose that the tensor fibered rank of C is

(
r t1, r

t
2, r

t
3

)
with

r tu = max
{
r1,tu , r2,tu , . . . , rnu ,tu

}
and rl,tu := rank

(
C̄ (l,t)
u

)
for u ∈ [3] and l ∈ [nu]

at the t th iteration. We compute the eigenvalues of
(
X̂ (l)
u

)H
X̂ (l)
u and then sort all
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Algorithm 3.1 Tensor Factorization for Tensor Completion with Spatio-temporal Characterization (STTF)

Input: The tensor data M ∈ C
n1×n2×n3 , F , G, H, the observed set Ω , the initialized rank R0,

parameters λ, ε, αu and βu , u ∈ [3].
Initialization: X 0

u , Y0
u , u ∈ [3].

While not converge do
1. Fix X̂ t

u and Ŷ t
u , compute Ct+1 by (11).

2. Compute X̂ t+1
u by (12), (14) and (16) by fixing Ŷ t

u and Ct+1.
3. Obtain Ŷ t+1

u by (13), (15) and (17) based on X̂ t+1
u and Ct+1.

4. Adopt the rank decreasing scheme to adjust rank f (A) and the sizes of X̂ t+1
u and Ŷ t+1

u .

5. Check the stop criterion
∥∥∥Ct+1 − Ct

∥∥∥
2

F
/
∥∥Ct∥∥2F < ε.

6. t ← t + 1.
end while
Output: Ct+1.

these eigenvalues for each u, and we can obtain λ1u � λ2u � · · · � λ
ntu
u with

ntu = ∑nu
l=1 r

l,t
u . Finally, we compute the quotients λ̂z

u = λz
u/λ

z+1
u for z ∈ [nt

u − 1].
Compute τ tu = (

T t
u − 1

)
λ̂
T t
u

u /
∑

z �=T t
u
λ̂z
u with T t

u = argmax1�z�ntu−1 λ̂z
u . If τ tu � 10

(there being a large drop in the magnitude of the eigenvalues), we should reduce

r tu . We find λ
stu
u such that it meets

∑stu
l=1 λlu/

∑nu
l=1 λlu � 95%. Assume there are

ml,t
u eigenvalues of

(
X̂ (l,t)
u

)H
X̂ (l,t)
u which belong to

{
λ
stu+1
u , . . . , λ

nu
u

}
. Then we set

rl,tu = rl,tu − ml,t
u . Suppose U (l)

u Σ
(l)
u

(
V (l)
u

)H
is the skinny SVD of X̂ (l)

u Ŷ (l)
u . We can

update X̂ (l)
u = U (l)

u,rl,tu
Σ

(l)

u,rl,tu
and Ŷ (l)

u =
(
V (l)

u,rl,tu

)H
, where

– U (l)

u,rl,tu
consists of the first rl,tu columns of U (l)

u ;

– Σ
(l)

u,rl,tu
is a diagonal matrix whose diagonal entries are the largest rl,tu eigenvalues

of Σ
(l)
u ;

– V (l)

u,rl,tu
consists of the first rl,tu rows of V (l)

u .

In this way, we can adjust the rank r tu for u ∈ [3] and estimate the true rank of the
tensor data.

3.2 Convergence Analysis

In this subsection, we present the convergence of STTF. The following notation
will be used in our analysis. In problem (8), Ω is an index set which locates the
observed data. We use Ωc to denote the complement of the set Ω with respect to
the set {(i, j, k) : i ∈ [n1], j ∈ [n2], k ∈ [n3]}. To simply the notation, we denote
zt = (Ct ,X t

1,X t
2,X t

3,Y t
1,Y t

2,Y t
3

)
in this subsection. Furthermore, we denote
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gt (C) =
3∑

u=1

αu

2

∥∥X t
u∗uY t

u − C∥∥2F ,

pt1(X1) = α1

2

∥∥∥X1∗1Y t
1 − Ct+1

∥∥∥
2

F
+ β3

2

∥∥(X1∗1Y t
1

) ∗1H
∥∥2
F + λ

2
‖X1‖2F ,

pt2(X2) = α2

2

∥∥∥X2∗2Y t
2 − Ct+1

∥∥∥
2

F
+ β1

2

∥∥F∗2
(X2∗2Y t

2

)∥∥2
F

+ λ

2

(
β1‖F ∗2 X2‖2F + α2‖X2‖2F

)
,

pt3(X3) = α3

2

∥∥∥X3∗3Y t
3 − Ct+1

∥∥∥
2

F
+ β2

2

∥∥(X3∗3Y t
3

) ∗3G
∥∥2
F + λ

2
‖X3‖2F ,

qt1(Y1) = α1

2

∥∥∥X t+1
1 ∗1Y1 − Ct+1

∥∥∥
2

F
+ β3

2

∥∥∥
(
X t+1
1 ∗1Y1

)
∗1H

∥∥∥
2

F

+ λ

2

(
β3‖Y1 ∗1 H‖2F + α1‖Y1‖2F

)
,

qt2(Y2) = α2

2

∥∥∥X t+1
2 ∗2Y2 − Ct+1

∥∥∥
2

F

+ β1

2

∥∥∥F∗2
(
X t+1
2 ∗2Y2

)∥∥∥
2

F
+ λ

2
‖Y2‖2F ,

qt3(Y3) = α3

2

∥∥∥X t+1
3 ∗3Y3 − Ct+1

∥∥∥
2

F
+ β2

2

∥∥∥
(
X t+1
3 ∗3Y3

)
∗3G

∥∥∥
2

F

+ λ

2

(
β2‖Y3 ∗3 G‖2F + α3‖Y3‖2F

)
.

Before proceeding, we present the Kurdyka–Lojasiewicz (KL) property [3] with con-
straint defined as below.

Definition 3 (Kurdyka–Lojasiewicz (KL) property) Let Z be an open set and f : Z →
R be a semi-algebraic function. For every critical point z� ∈ Z of f , there are a
neighborhood of z�, denoted by Z ′ ⊂ Z , an exponent θ ∈ [0, 1) and a positive
constant μ such that

| f (z) − f (z�)|θ ≤ μ

∥∥∥
∏

Ω
(∇ f (z))

∥∥∥
F

, (18)

where

∏
Ω

(∇ f (z)) = (PΩ (∇C f (z)) ;
∇X1 f (z); ∇X2 f (z); ∇X3 f (z); ∇Y1 f (z); ∇Y2 f (z); ∇Y3 f (z)

)
.

Note that f (z), defined as in (9), is a quadratic function on z, and hence is a semi-
algebraic function. From Definition 3, for any critical point z�, there exist θ and μ

such that (18) is satisfied.

Theorem 1 Suppose that {zt } is an infinite sequence generated by STTF. Then we have
the following statements:
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(1) the sequence {zt } is bounded and any accumulation point of {zt } is a stationary
point of problem (9);

(2) there is a constant η > 0 such that η‖zt − zt+1‖F ≥ ‖∏Ω(∇ f (zt ))‖F .

Proof Since rank r ≥ 0 in STTF is non-increasing, we can assume that the rank r is
fixed for all zt when t is sufficiently large. That is, the rank decreasing scheme is not
adopted for all such big enough t . For simplicity, we assume that t is big enough such
that r is fixed and denote f t = f (zt ) in the following.

(1) By (11), it follows

‖Ct+1 − Ct‖2F =
∥∥∥∥

3∑
u=1

αuX t
u∗uY t

u + PΩ

(
M −

3∑
u=1

αuX t
u∗uY t

u

)
− Ct

∥∥∥∥
2

F

=
∥∥∥∥

3∑
u=1

αuX t
u∗uY t

u − Ct + PΩ

(
M −

3∑
u=1

αuX t
u∗uY t

u

)∥∥∥∥
2

F

=
∥∥∥∥∥

(
3∑

u=1
αuX t

u∗uY t
u − Ct

)

Ωc

∥∥∥∥∥

2

F

.

According to STTF, we have that

f t − f t+1 = gt (Ct ) − gt (Ct+1) +
3∑

u=1

(
ptu(X t

u) − ptu(X t+1
u )

)+
3∑

u=1

(
qtu(Y t

u) − qtu(Y t+1
u )

)

� 1

2

⎛

⎝
∥∥∥∥∥

3∑

u=1

αuX t
u ∗u Y t

u − Ct

∥∥∥∥∥

2

F

−
∥∥∥∥∥

3∑

u=1

αuX t
u ∗u Y t

u − Ct+1

∥∥∥∥∥

2

F

⎞

⎠

+
3∑

u=1

nu∑

l=1

ζ

2nu

(∥∥∥X̂ (l,t)
u − X̂ (l,t+1)

u

∥∥∥
2

F
+
∥∥∥Ŷ (l,t)

u − Ŷ (l,t+1)
u

∥∥∥
2

F

)

= 1

2

∥∥∥∥∥

(
3∑

u=1

αuX t
u ∗u Y t

u − Ct

)

Ωc

∥∥∥∥∥

2

F

+ ζ

2

3∑

u=1

(∥∥X t
u − X t+1

u

∥∥2
F + ∥∥Y t

u − Y t+1
u

∥∥2
F

)

= 1

2

∥∥Ct+1 − Ct
∥∥2
F + ζ

2

3∑

u=1

(∥∥X t
u − X t+1

u

∥∥2
F + ∥∥Y t

u − Y t+1
u

∥∥2
F

)

≥ min{1, ζ }
2

∥∥zt+1 − zt
∥∥2
F ,

(19)

where ζ = λmin{1, α1, α2, α3} and the first inequality holds from the property of
strongly convex functions. Therefore, { f t } is monotonically decreasing. Together with
the fact that f ≥ 0, the series

∑∞
t=1

(
f t − f t+1

) = f 1 − limt→∞ f t converges.
Hence,

∞∑

t=1

(
f t − f t+1

)
< ∞,

∞∑

t=1

∥∥∥zt − zt+1
∥∥∥
2

F
< ∞.
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Since f t � ζ
2

∑3
u=1

(∥∥X t
u‖2F + ‖Y t

u

∥∥2
F

)
, {X t

u} and {Y t
u} are bounded. Together

with the expression of Ct , it is asserted that {Ct } is also bounded, and hence {zt } is
bounded.

Clearly, there exists a convergent subsequence of {zt }.Without loss of generality,we
assume that limk→∞ ztk = z�. From

∑∞
t=1 ‖zt −zt+1‖2F < ∞, limt→∞ zt+1−zt = 0,

and hence limk→∞ ztk+1 = z�.
Together with (11)–(17), we have that

α1

(
X̂�
1Ŷ

�
1 − C̄�

1

) (
Ŷ �
1

)H + λX̂�
1 + β3 X̂�

1

(
Ŷ �
1 H̄1

) (
Ŷ �
1 H̄1

)H = 0,

α2

(
X̂�
2Ŷ

�
2 − C̄�

2

) (
Ŷ �
2

)H + λα2 X̂�
2 + λβ1 F̄ H

2 F̄2 X̂�
2 + β1 F̄ H

2 F̄2 X̂�
2Ŷ

�
2

(
Ŷ �
2

)H = 0,

α3

(
X̂�
3Ŷ

�
3 − C̄�

3

) (
Ŷ �
3

)H + λX̂�
3 + β2 X̂�

3

(
Ŷ �
3 Ḡ3

) (
Ŷ �
3 Ḡ3

)H = 0,

α1

(
X̂�
1

)H (
X̂�
1Ŷ

�
1 − C̄�

1

)
+ λα1Ŷ �

1 + λβ3Ŷ �
1 H̄1 H̄ H

1 + β3

(
X̂�
1

)H
X̂�
1Ŷ

�
1 H̄1 H̄ H

1 = 0,

α2

(
X̂�
2

)H (
X̂�
2Ŷ

�
2 − C̄�

2

)
+ λŶ �

2 + β1

(
F̄2 X̂�

2

)H (
F̄2 X̂�

2

)
Ŷ �
2 = 0,

α3

(
X̂�
3

)H (
X̂�
3Ŷ

�
3 − C̄�

3

)
+ λα3Ŷ �

3 + λβ2Ŷ �
3 Ḡ3ḠH

3 + β2

(
X̂�
3

)H
X̂�
3Ŷ

�
3 Ḡ3ḠH

3 = 0,

PΩ (C� − M) = 0,

PΩc

(
3∑

u=1
αuX �

u ∗uY�
u − C�

)
= 0.

Therefore, z� is a stationary point of problem (9).
(2) Since {zt } is bounded, there exists a compact convex set Z such that {zt } ⊂ Z .

Since f is a quadratic polynomial in z, the gradient ∇ f is Lipschitz in Z with a
Lipschitz constant L f , that is,

‖∇ f (z) − ∇ f (z′)‖F ≤ L f ‖z − z′‖F , ∀ z, z′ ∈ Z .

Clearly,

∥∥∏
Ω

(∇C f
(
zt+1

))∥∥
F ≤

∥∥∥
∏

Ω

(
∇C f

(
Ct+1,X t+1

1 , . . . ,Y t+1
3

))

−∏
Ω

(∇C f
(Ct ,X t

1, . . . ,Y t
3

))∥∥
F+ ∥∥∏

Ω

(∇C f
(Ct ,X t

1, . . . ,Y t
3

))∥∥
F

≤ L f
∥∥zt+1 − zt

∥∥
F +

∥∥∥∥∥

(
Ct −

3∑
u=1

αuX t
u ∗u Y t

u

)

Ωc

∥∥∥∥∥
F= L f

∥∥zt+1 − zt
∥∥
F + ∥∥Ct+1 − Ct∥∥F≤ (

L f + 1
) ∥∥zt+1 − zt

∥∥
F .

Furthermore,

∥∥∇X1 f
(
zt+1)∥∥

F ≤
∥∥∥∇X1 f

(
Ct+1,X t+1

1 , . . . ,Y t+1
3

)
− ∇X1 f

(
Ct+1,X t+1

1 , . . . ,Y t
3

)∥∥∥
F

+
∥∥∥∇X1 f

(
Ct+1,X t+1

1 , . . . ,Y t
3

)∥∥∥
F
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≤ L f ‖zt+1 − zt‖F + λ‖X t+1
u − X t

u‖F
≤ (

L f + λ
) ∥∥zt+1 − zt

∥∥
F .

Similarly, for any u ∈ [3], we have
∥∥∥∇Xu f (z

t+1)

∥∥∥
F

≤ (
L f + λ

) ∥∥∥zt+1 − zt
∥∥∥
F

,
∥∥∥∇Yu f (z

t+1)

∥∥∥
F

≤ (
L f + λ

) ∥∥∥zt+1 − zt
∥∥∥
F

.

Now we can assert that ‖∏Ω

(∇ f (zt+1)
) ‖F ≤ (7L f + 6λ+ 1)‖zt+1 − zt‖F and the

result (2) is arrived with η := 7L f + 6λ + 1. �


Theorem 2 Suppose that z� is an accumulation point of {zt } generated by STTF.
Assume that the starting point z0 satisfies z0 ∈ B (z�, σ ) := {z : ‖z − z�‖F < σ } ⊆
Z ′, θ and μ are defined as in Definition 3. Suppose that ρ = min{1,λ}

2η with η and λ

being from Theorem 1 (2) and

σ >
μ

ρ(1 − θ)

∣∣∣ f
(
z0
)

− f
(
z�
)∣∣∣
1−θ +

∥∥∥z0 − z�
∥∥∥
F

.

Then

(1) zt ∈ B (z�, σ ) , for t = 0, 1, 2, . . . ;
(2)

∑∞
t=0

∥∥zt+1 − zt
∥∥
F ≤ μ

ρ(1−θ)

∣∣ f
(
z0
)− f (z�)

∣∣1−θ ;
(3) limt→∞ zt = z�.

Proof We show (1) by induction. Clearly, (1) is true for t = 0 by assumption. Assume
that (1) holds for all t ≤ t̄ , then KL property holds for such zt . Now we show that (1)
is true for t = t̄ + 1.

Let θ ∈ (0, 1) and φ(s) := μ
(1−θ)

(s − f (z�))1−θ , s ≥ f (z�). Then, φ(s) is con-
cave with its derivative φ′(s) = μ

|s− f (z�)|θ for s > f (z�). Since φ(s) is concave, we

have

φ
(
f
(
zt
))− φ

(
f
(
zt+1

))
≥ φ′ ( f

(
zt
)) [

f
(
zt
)− f

(
zt+1

)]

= μ

| f (zt ) − f (z�)|θ
[
f
(
zt
)− f

(
zt+1

)]
.

Combining with (18) (19) and Theorem 1 (2), we have

φ
(
f
(
zt
))− φ

(
f
(
zt+1)) ≥ 1∥∥∏

Ω (∇ f (zt ))
∥∥
F

[
f
(
zt
)− f

(
zt+1)] ≥ ρ

∥∥zt+1 − zt
∥∥
F .
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Hence,

t∑
p=0

∥∥zk+1 − zk
∥∥
F ≤ 1

ρ

t∑
p=0

[
φ
(
f
(
zt
))− φ

(
f
(
zt+1

))]

= 1
ρ

[
φ
(
f
(
z0
))− φ

(
f
(
zt+1

))]

≤ 1
ρ
φ
(
f
(
z0
))

.

(20)

This implies that

∥∥zt+1 − z�
∥∥
F ≤

t∑

p=0

‖zt+1 − zt‖F + ∥∥z0 − z�
∥∥
F ≤ 1

ρ
φ
(
f
(
z0
))+ ∥∥z0 − z�

∥∥
F < σ.

Then we have zt+1 ∈ B (z�, σ ), and hence (1) is asserted.
(2) Taking t → ∞ in (20), (2) is arrived.
(3) From (2), for any ε > 0, there exists K1 > 0 such that for any t ≥ K1 such

that ‖zt − ztk‖F ≤ ∑tk−t
i=1 ‖zt+i − zt+i−1‖F < ε

2 . From limk→∞ ztk = z�, there exists
K2 > 0 such that for all k > K2, ‖ztk − z�‖F < ε

2 . Hence, for any t ≥ max{K1, K2},

‖zt − z�‖F ≤ ‖zt − ztk‖F + ‖ztk − z�‖F ≤ ε,

which indicates that zt → z�. �

Theorem 3 Suppose that

{
zt
}
is an infinite sequence generated by STTF with an

accumulating point z� and θ, μ are as in Definition 3. Then

(a) If θ ∈ (0, 1
2

]
, then there exist γ > 0 and c ∈ (0, 1) such that

∥∥zt − z�
∥∥
F ≤ γ ct ;

(b) If θ ∈ ( 12 , 1
)
, then there exists γ > 0 such that

∥∥zt − z�
∥∥
F ≤ γ t−

1−θ
2θ−1 .

Proof Assume that z0 ∈ B (z�, σ ). Denote that Δt := ∑∞
p=t

∥∥z p − z p+1
∥∥
F . Then

∥∥zt − z�
∥∥
F ≤ Δt . (21)

From Theorem 2 (2), we have

Δt ≤ μ

ρ(1 − θ)

∣∣∣ f
(
z0
)

− f
(
z�
)∣∣∣
1−θ = μ

ρ(1 − θ)

[∣∣∣ f
(
z0
)

− f
(
z�
)∣∣∣

θ
] 1−θ

θ

.

Combining with the KL inequality, there holds

Δt ≤ μ

ρ(1 − θ)

(
μ

∥∥∥
∏

Ω
(∇ f (z))

∥∥∥
F

) 1−θ
θ

.

From Theorem 1 (2), the above inequality implies that

Δt ≤ μ

ρ(1 − θ)

(
μη

∥∥∥zt − zt+1
∥∥∥
F

) 1−θ
θ = c1 (Δt − Δt+1)

1−θ
θ . (22)

123



Journal of Optimization Theory and Applications

where c1 = μ
ρ(1−θ)

(μη)
1−θ
θ is a positive constant.

(a) If θ ∈ (
0, 1

2

]
, then 1−θ

θ
≥ 1. For sufficiently large t , it holds Δt ≤

c1 (Δt − Δt+1) . Hence Δt+1 ≤ c1−1
c1

Δt . Together with (21), result (a) is arrived

with c = c1−1
c1

.

(b) For case of θ ∈ ( 1
2 , 1

)
, let h(s) = s− θ

1−θ . The function h(s) is monotonically
decreasing on s. By (22), we have

c
− θ

1−θ

1 ≤ h (Δt ) (Δt − Δt+1) = ∫ Δt
Δt+1

h (Δt ) ds ≤ ∫ Δt
Δt+1

h(s)ds

= − 1−θ
2θ−1

(
Δ

− 2θ−1
1−θ

t − Δ
− 2θ−1

1−θ

t+1

)
.

Since θ ∈ ( 12 , 1
)
, ν := − 2θ−1

1−θ
< 0 and Δν

t+1 − Δν
t ≥ −νc

− θ
1−θ

1 > 0. Thus, there is
a t̂ such that for all t ≥ 2t̂ ,

Δν
t ≥ Δν

t̂
− νc

− θ
1−θ

1 (t − t̂) ≥ −νc
− θ

1−θ

1 (t − t̂) ≥ −ν

2
c
− θ

1−θ

1 t,

then we have Δt ≤ γ t
1
ν for a certain positive constant γ =

(
− ν

2 c
− θ

1−θ

1

) 1
ν

. Then

result (b) is obtained. �


4 Numerical Experiments

In this section, we report some numerical results of our proposed STTF to show its
validity. We employ the peak signal-to-noise ratio (PSNR), the structural similarity
(SSIM) [37], and the feature similarity (FSIM) [43] to measure the quality of the
recovered results. We conduct extensive experiments to evaluate our method, and then
compare the results with those by some other existing methods, including WSTNN
[46], CTNN [44], TNN [45], TCTF [48], TMac [40], NTD [39] and NCPC [41]. All
the methods are implemented on the platform of Windows 10 and Matlab (R2020b)
with an Intel(R) Core(TM) i5-12500H CPU at 2.50GHz and 16 GB RAM.

Parameter selection In all tests, the maximum number of iterations is set to be 300
and the termination precision ε is set to be 10−5. In STTF, the parameter λ is set
as 10−4 and F, G, H are all set to Toeplitz matrices. Table 1 shows the parameter
settings for the proposed STTF method on different data.

4.1 Color Image Inpainting

In this subsection, we apply our STTFmethod to the task of color image inpainting. As
color images can be expressed as third-order tensors, we model the image inpainting
problem as a tensor completion problem, assuming that the tensor data is of low-
rank or numerical low-rank. For image inpainting evaluation, we use the Berkeley
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Table 1 Parameter settings of STTF on different data

Test (α1, α2, α3) (β1, β2, β3)

Image SR = 10% (1,2,3)/6 (0.5,0.1,0)

SR = 15% (0.3,0.08,0)

SR = 20% (0.1,0.05,0)

Video SR = 10% (1,1,1)/3 (0.001,0.01,100)

Internet traffic SR = 10% (1,1,1)/3 (0,20,0)

SR = 20% (0,2,0)

SR = 30% (0,0.8,0)

SR = 40% (0,0.6,0)

SR = 50% (0,0.4,0)

SR ≥ 60% (0,0.05,0)

Table 2 The average PSNR, SSIM, and FSIM values for all 50 images tested by eight methods

SR 10% 15% 20%

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

STTF 27.868 0.851 0.887 30.606 0.909 0.926 31.996 0.919 0.936

WSTNN 25.803 0.829 0.861 28.034 0.875 0.895 29.470 0.904 0.915

CTNN 25.603 0.667 0.791 28.010 0.773 0.854 29.943 0.838 0.895

TNN 25.538 0.662 0.788 27.984 0.767 0.850 29.759 0.831 0.889

TCTF 11.549 0.095 0.316 18.305 0.372 0.573 26.062 0.691 0.802

TMac 10.972 0.102 0.331 14.397 0.338 0.536 21.995 0.520 0.691

NTD 24.662 0.555 0.724 26.602 0.674 0.791 27.939 0.749 0.834

NCPC 23.170 0.449 0.662 26.459 0.642 0.779 28.347 0.745 0.836

Bold values indicate the best results

Segmentation database [29] as our test dataset. Our test set consists of 50 images,
each of size 481 × 321 × 3. We set the initial tensor fibered rank (rlu)

0 = 3, u ∈
[2], (r13 )

0 = 50, (r23 )0 = · · · = (rn33 )0 = 5 in STTF, the initial tubal rank (50, 5, 5)
in TCTF, the initial Tucker rank (30, 30, 3) in TMac and NTD and the initial CP rank
50 in NCPC.

Table 2 shows the mean values of three metrics (PSNR, SSIM, and FSIM) for all
50 images with different sampling rates (10%, 15%, and 20%). Our STTF method
achieves the best image recovery results under all three sampling rates. The higher
the sampling rate, the more obvious the advantage of STTF. And when the sampling
rate is 10%, STTF outperforms the second best method by 8.00%, 2.65%, and 3.02%
in terms of PSNR, SSIM, and FSIM, respectively. A visual comparison of the image
inpainting results for “Church” with a 20% sampling rate is shown in Fig. 1. It can be
seen that STTF is obviously superior to the comparison methods in the recovery of
rich shape structure and texture information.
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Original Observed STTF WSTNN CTNN

TNN TCTF TMac NTD NCPC

Fig. 1 The completion results of “Church” with SR = 20%

4.2 Video Inpainting

We evaluate our proposed method STTF on the widely used YUV Video Sequences1

and we pick the first 8 frames. In the experiments, we test our proposed method and
other methods on three videos with 144× 176 pixels. We test the videos with random
missing data of sampling ratio SR = 10%. We set the initial tensor fibered rank
(rlu)

0 = 3, u ∈ [2], (r13 )
0 = 50, (r23 )0 = · · · = (rn33 )0 = 10 in STTF, the initial tubal

rank (10, 1, . . . , 1) in TCTF, the initial Tucker rank (50, 50, 3) in NTD and (10, 10, 3)
in TMac, and the initial CP rank 50 in NCPC.

Figure 2 shows the 8th frame of video “Mother”. Table 3 presents the numerical
results, which show that STTF performs better than other methods. It can be seen that
the recovered frame by STTF preserves more details while the competing methods
generate undesired artifacts. These results are consistent with those of color image
inpainting, further demonstrating the superior performance of our method.

4.3 Internet Traffic Inpainting

We model the traffic data as a third-order tensor M ∈
R

D×T×O . Here O corresponds to the number of OD
pairs with O = N ×N (N is the number of nodes in the
network), and there are D days to consider with each
day having T time slots.

We use Abilene trace data [34] as an example to illustrate this model. The traffic
data consists of measurements between 144 OD pairs every 5min for 168 days, which
corresponds to 288 time slots per day. We use the complete traffic data of one week.

1 http://trace.eas.asu.edu/yuv/.

123



Journal of Optimization Theory and Applications

Original Observed STTF WSTNN CTNN

TNN TCTF TMac NTD NCPC

Fig. 2 The completion results at the 8th frame of video “Mother” with SR = 10%

Table 3 The PSNR, SSIM and FSIM values output by eight methods for videos

Video Container Mother Bridge

Method PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

STTF 27.542 0.890 0.921 33.261 0.919 0.951 28.516 0.851 0.931

WSTNN 25.503 0.869 0.882 30.172 0.891 0.915 26.964 0.834 0.898

CTNN 24.872 0.795 0.875 30.155 0.828 0.917 26.772 0.773 0.894

TNN 24.724 0.799 0.873 30.095 0.824 0.910 26.656 0.767 0.890

TCTF 20.307 0.617 0.784 24.779 0.598 0.807 22.532 0.525 0.769

TMac 23.417 0.725 0.837 28.153 0.738 0.856 25.478 0.684 0.848

NTD 22.797 0.661 0.806 27.292 0.672 0.845 24.834 0.610 0.812

NCPC 21.809 0.588 0.773 25.453 0.549 0.796 23.040 0.519 0.783

Bold values indicate the best results

Therefore, the trace data can be modeled as a third-order tensor M ∈ R
7×288×144.

We measure the quality of the recovered data by the normalized mean absolute error
(NMAE) in the missing values. The NMAE is defined as follows:

NMAE =
∑

(i, j,k)/∈Ω

∣∣∣Mi jk − C�
i jk

∣∣∣
∑

(i, j,k)/∈Ω

∣∣Mi jk
∣∣ .

Figure 3 shows the recovered results in Abilene dataset by eight algorithms. The
X -axis represents the sampling rate of data, and the Y -axis represents NMAE. As the
sampling rate increases, the NMAE value gradually decreases except for TMac and
TCTF. As shown in Fig. 3, the proposed method STTF significantly outperforms the
other methods under various missing rates. This phenomenon implies that the spatio-
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Fig. 3 Comparison on the NMAE by eight methods of different sampling ratios

temporal structure in the internet traffic tensor is valuable and has been exploited to
improve the recovery accuracy. Among the eight methods, STTF has the best recovery
effect. Note that STTF can still recover missing data with a very low error even if the
sampling rate is very low.

5 Conclusion

In this paper, we have presented a novel tensor completion model that incorporates
some characteristics of the color image data, the video data and the internet traffic
data. By using some constraint matrices to represent these characteristics, our model
leveraged the tensor fibered rank to reduce the complexity and improved the accuracy
of tensor completion. We have proposed a tensor factorization-based method to solve
the optimization problem. Our experimental results on various real-world datasets
demonstrated that our method outperformed existing methods in the literature signif-
icantly.
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Data Availability Codes supporting the numerical results are freely available in the GitHub repository,
https://github.com/quanyumath/STTF.
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