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Abstract
The main aim of this paper is to develop a nonconvex optimization model
for third-order tensor completion under wavelet transform. On the one hand,
through wavelet transform of frontal slices, we divide a large tensor data into a
main part tensor and three detail part tensors, and the elements of these four ten-
sors are about a quarter of the original tensors. Solving these four small tensors
can not only improve the operation efficiency, but also better restore the original
tensor data. On the other hand, by using concave correction term, we are able to
correct for low rank of tubal nuclear norm (TNN) data fidelity term and sparsity
of l1-norm data fidelity term. We prove that the proposed algorithm can converge
to some critical point. Experimental results on image, magnetic resonance imag-
ing and video inpainting tasks clearly demonstrate the superior performance
and efficiency of our developed method over state-of-the-arts including the TNN
and other methods.
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1 INTRODUCTION

Tensor completion, which recovers missing elements based on the known data, has received extensive research and
increasing attentions, such as image/video inpainting,1-7 medical image processing,8,9 high altitude aerial image inpaint-
ing,10 hyperspectral data recovery,11,12 and internet traffic recovery.13-15 Generally, the low rank tensor completion (LRTC)
problem can be addressed by the rank minimization problem:

min


rank(), s.t. PΩ() = PΩ(), (1)

where is an observed incomplete tensor and Ω is the index set corresponding to the observed entries of, and PΩ(⋅)
is the sampling operator that remains the elements in Ω while making the others to be zeros.

However, unlike the matrix rank, there is no unique definition of the tensor rank. Among the known tensor ranks,
Tucker rank and CANDECOMP/PARAFAC (CP) rank are the most widely used, and they correspond to Tucker decompo-
sition16 and CP decomposition17,18 of tensors, respectively. It is NP-hard to compute CP rank of a tensor.19-21 However, the
Tucker rank is based on the matrix rank and thus computable. Therefore, the LRTC problem is mostly based on Tucker
rank model. For example, Liu et al.22 proposed the sum of nuclear norms of unfolding matrices of a tensor to approximate
the Tucker rank minimization for tensor completion. However, unfolding a tensor as a matrix would destroy its origi-
nal multiway structure, resulting in vital information being lost and decreasing performance.21,23 Note that the rows and
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columns of the expanded matrix are very different, which is very unfavorable for matrix restoration. Xu et al.24 introduced
a alternating proximal gradient method for sparse nonnegative Tucker decomposition with missing values. However, this
model does not take advantage of the low rank structure of the factor matrix and needs to predict the rank of the tensor
in advance.

In a recent paper, a new decomposition method for third-order tensors called tensor singular value decomposition
(t-SVD)25,26 has been proposed. This method decomposes a tensor into the product of two orthogonal tensors and one
f-diagonal tensor (see Section 2 for details). With the help of the t-SVD framework, the tensor multi-rank and tubal rank
were proposed by Kilmer et al.27 As the t-SVD is based on an operator theoretic interpretation of third-order tensors as
linear operators on the space of oriented matrices, the tubal rank and multi-rank of the tensor describe the inherent low
rank structure of the tensor without the loss of information inherent in matricization.27,28 Then, Semerci et al.29 developed
a new tensor nuclear norm called TNN. Based on TNN, Zhang et al.25 studied the tensor completion problem. From the
definition of TNN, it can be seen that it is essentially the l1-norm of all front slice singular value vectors of the tensor after
Fourier transform. However, statisticians have long known that the l1-norm penalty yields biased estimators and cannot
achieve the best estimation performance.30 In other words, TNN and l1-norm will produce biased estimators. Growing
evidence supports the use of nonconvex sparse (low rank) formulations to improve model fidelity and generalization.31-33

For example, Jiang et al.34 proposed partial sum of TNN for tensor recovery. Zhao et al.12 proposed concave smooth
correction of l1-norm which is continuous, sparsity promoting and unbiasedness. Numerical tests showed that the concave
smooth correction of l1-norm improves the sparsity of the data fidelity term greatly. Thus, we add concave correction term
to both TNN and l1-norm.

However, TNN and other corresponding nonconvex TNN require computing t-SVD, which can take a lot of time
when the data scale is large. On the other hand, model (1) does not solve the main part and the detail part of the
multi-dimensional visual data separately, which leads to the fact that the detail part is easily lost. In order to take full
advantage of the intrinsic structure in multi-dimensional visual data and improve the computational efficiency, we pro-
pose a novel tensor completion model based low rank and sparse representation under wavelet transform, which can
characterize the internal structure of the main part and the detail part of the data very well. More precisely, the proposed
wavelet transform of frontal slices involves two steps:

• In the first step, we use a single-level discrete two-dimensional wavelet transform to transform each frontal slice X (k) ∶=
(∶, ∶, k), k = 1, … ,n3 of tensor  ∈ Rn1×n2×n3 into four elements also known as subbands namely A(k)

, H(k)
, V (k),

and D(k) with size ⌈n1∕2⌉ × ⌈n2∕2⌉. The approximation of the original image X (k) is known as the A(k) subband. The
remaining three subbands are known as details, which represent components of wavelet coefficients, and are referred
to as horizontal details, vertical details, and diagonal details, respectively. Mathematically, it is expressed as

WX (k) =
{

A(k)
,H(k)

,V (k)
,D(k)}

,

where W is wavelet transform.
• In the second step, we construct four new tensors , ,  ,  such that (∶, ∶, k) ∶= A(k), (∶, ∶, k) ∶= H(k), (∶, ∶
, k) ∶= V (k) and(∶, ∶, k) ∶= D(k) for all k = 1, … ,n3.

Figure 1 shows wavelet transform of the color image “House.” Figure 2 shows the comparison of the proportion of
singular values of  , , ,  , and the distributions of the pixel values of . From Figure 2, we can observe that , ,
and  are low rank and is sparse.

Based on the above analysis, we introduce a nonconvex optimization model for tensor completion under wavelet
transform:

min


𝜆A ‖‖⊛,𝜃1
+ 𝜆H ‖‖

⊛,𝜃1
+ 𝜆V ‖‖

⊛,𝜃1
+ 𝜆D

(
‖‖1 − Ψ𝜃2()

)
,

s.t. PΩ() = PΩ(), W = {,, ,} ,
(2)

where regularization parameter 𝜆A, 𝜆H , 𝜆V , 𝜆D control the trade off. ‖‖
⊛,𝜃

= ‖‖∗ − Q
𝜃
(), Q

𝜃
() =

1
n3

∑n3
k=1Ψ𝜃

(
𝜎

(
C
(k)))

, the definition of ‖‖∗ in Definition 8, Ψ
𝜃

is a convex and continuous differential function which
is defined as

Ψ
𝜃
() =

dim()∑

l=1
𝜓
𝜃
(vec ()l) ,
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F I G U R E 1 Wavelet transform of the color image “House.” For better visualization, we add 0.5 to the pixel in,  , and

where 𝜓
𝜃

is a convex and continuous differentiable function defined as

𝜓
𝜃
(x) ∶=

{
x2

2𝜃
, |x| ≤ 𝜃,

|x| − 𝜃

2
, |x| > 𝜃.

The proposed minimization model (2) can be obtained via the difference of convex functions (DC) algorithm35 with a
theoretical convergence guarantee. We conduct numerical experiments on various types of visual data and the results
verify that our method outperforms the compared methods.

In summary, our main contributions include:

(1) Through wavelet transform, we transform the solution of one tensor with size n1 × n2 × n3 into four tensors with size
⌈n1∕2⌉ × ⌈n2∕2⌉ × n3, which greatly improves the speed of the algorithm.

(2) By wavelet transform, we solve the main part and the detail part of tensors separately to facilitate better mining of
their data features for a better recovery.

(3) By using concave correction term, we are able to correct for low rank of TNN data fidelity term and sparsity of l1-norm
data fidelity term.

(4) We prove that the proposed DC algorithm can converge to some critical point. The outperformance of our method
in experimental results further corroborates the usage of wavelet transform.

The outline of this paper is given as follows. We recall the basic tensor notations in Section 2. In Section 3, we give the
main results, including the proposed model, algorithm and the convergence analysis of algorithm. Extensive simulation
results are reported in Section 4. Section 5 briefly concludes our study.

2 NOTATIONS AND PRELIMINARIES

This section recalls some basic knowledge on tensors. We first give the basic notations and then present the tubal rank
and t-SVD. We state them here in detail for the readers’ convenience.

2.1 Notations

For a positive integer n, [n] ∶= {1, 2, … ,n}. Scalars, vectors and matrices are denoted as lowercase letters (a, b, c, … ),
boldface lowercase letters (a,b, c, … ) and uppercase letters (A,B,C, … ), respectively. Third-order tensors are denoted as
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F I G U R E 2 Compares the accuracy of tensor singular value decomposition of  , , ,  with respect to the change of proportion
kept of singular values, and the distribution of pixel values of

calligraphic letters (,,, … ). For a third-order tensor ∈ Rn1×n2×n3 , we use the Matlab notations(∶, ∶, k) to denote
its kth frontal slice, denoted by A(k) for all k ∈ [n3]. The inner product of two tensors ,  ∈ Rn1×n2×n3 is the sum of
products of their entries, that is,

⟨,⟩ =
n1∑

i=1

n2∑

j=1

n3∑

k=1
ijkijk.

The Frobenius norm is ‖‖ =
√
⟨,⟩.

2.2 T-product, tubal rank and t-SVD

Discrete Fourier Transformation (DFT) plays a key role in tensor-tensor product (t-product). For ∈ Rn1×n2×n3 , let ∈
Cn1×n2×n3 be the result of DFT of  ∈ Rn1×n2×n3 along the third dimension. Specifically, let Fn3 = [f1, … , fn3

] ∈ Cn3×n3 ,
where

fi =
[
𝜔

0×(i−1);𝜔1×(i−1); … ;𝜔(n3−1)×(i−1)] ∈ C
n3
,

with 𝜔 = e−
2𝜋𝔟
n3 and 𝔟 =

√
−1. Then (i, j, ∶) = Fn3(i, j, ∶), which can be computed by Matlab command “ =

fft(, [ ], 3).” Furthermore, can be computed by with the inverse DFT = ifft(, [ ], 3).

Lemma 1. (Reference 36) Given any real vector v ∈ Rn3 , the associated v = Fn3 v ∈ Cn3 satisfies

v1 ∈ R and conj
(

vi
)
= vn3−i+2, i = 2, … ,

⌊n3 + 1
2

⌋
.
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By using Lemma 1, the frontal slices of have the following properties:

⎧
⎪
⎨
⎪
⎩

̄A(1) ∈ Rn1×n2
,

conj
(
̄A(i)) = ̄A(n3−i+2)

, i = 2, … ,

⌊
n3+1

2

⌋
.

(3)

For ∈ Rn1×n2×n3 , we define matrix ̄A ∈ Cn1n3×n2n3 as

̄A = bdiag() =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̄A(1)

̄A(2)

⋱
̄A(n3)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

Here, bdiag(⋅) is an operator which maps the tensor  to the block diagonal matrix ̄A. The block circulant matrix
bcirc() ∈ Rn1n3×n2n3 of is defined as

bcirc() =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

⋮ ⋮ ⋱ ⋮

A(n3) A(n3−1) · · · A(1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Based on these notations, the t-product is presented as follows.

Definition 1. (T-product)28 For ∈ Rn1×r×n3 and  ∈ Rr×n2×n3 , define

 ∗  ∶= fold (bcirc() ⋅ unfold()) ∈ R
n1×n2×n3

.

Here

unfold() =
[
B(1);B(2); … ;B(n3)

]
,

and its inverse operator “fold" is defined by
fold(unfold()) = .

We will now present the definition of tubal rank. Before then, we need to introduce some other concepts.

Definition 2. (F-diagonal tensor)28 If each of a tensor’s frontal slices is a diagonal matrix, the tensor is denoted
f -diagonal.

Definition 3. (Conjugate transpose)28 The conjugate transpose of a tensor ∈ Rn1×n2×n3 , denoted as∗, is the tensor
obtained by conjugate transposing each of the frontal slices and then reversing the order of transposed frontal slices 2
through n3.

Definition 4. (Identity tensor)28 The identity tensor  ∈ Rn×n×n3 is a tensor with the identity matrix as its first frontal
slice and all other frontal slices being zeros.

Definition 5. (Orthogonal tensor)28 A tensor  ∈ Rn×n×n3 is orthogonal if it fulfills the condition ∗ ∗  =  ∗

∗ = .

Definition 6. (T-SVD)28 A tensor ∈ Rn1×n2×n3 can be factored as

 =  ∗  ∗ ∗,

where ∈ Rn1×n1×n3 and  ∈ Rn2×n2×n3 are orthogonal tensors, and  ∈ Rn1×n2×n3 is a f -diagonal tensor.

Tensor multi-rank, tubal rank and TNN are now introduced.

Definition 7. (Tensor multi-rank and tubal rank)27 For tensor  ∈ Rn1×n2×n3 , let rk = rank
(
̄A(k)) for all k ∈

[n3]. Then multi-rank of  is defined as rankm() = (r1, … , rn3). The tensor tubal rank is defined as rankt() =
max {rk|k ∈ [n3]}.
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Definition 8. (TNN)37 The TNN of a tensor ∈ Rn1×n2×n3 , denoted as ||||∗, is defined as the sum of the singular values
of all frontal slices of, that is, ||||∗ = 1

n3

∑n3
k=1

‖
‖
̄A(k)‖

‖∗.

3 TENSOR COMPLETION UNDER WAVELET TRANSFORM AND
CONCAVE SMOOTH CORRECTION

This section is divided into four parts. Section 3.1 gives a nonconvex optimization model based wavelet transform for
tensor completion. Section 3.2 provides the corresponding DC algorithm and Section 3.3 gives its complexity analysis.
Section 3.4 provides convergence details of the algorithm.

3.1 The proposed model under wavelet transform and concave smooth correction

Based on the above analysis, we introduce a nonconvex optimization model for tensor completion under wavelet
transform and concave smooth correction:

min
,, ,,

𝜆A ‖‖⊛,𝜃1
+ 𝜆H ‖‖

⊛,𝜃1
+ 𝜆V ‖‖

⊛,𝜃1
+ 𝜆D

(
‖‖1 − Ψ𝜃2()

)
,

s.t. PΩ() = PΩ(), W = {,, ,} .
(5)

By penalizing the constraint PΩ() = PΩ() and W = {,, ,}, we get the following problem

min L (,, ,,) ∶= lS() + 𝜆A ‖‖⊛,𝜃1
+ 𝜆H ‖‖

⊛,𝜃1
+ 𝜆V ‖‖

⊛,𝜃1
+ 𝜆D

(
‖‖1 − Ψ𝜃2()

)

+ 𝛽

2
‖W − {,, ,}‖2

,

(6)

where 𝛽 > 0 is a penalty parameter and lS() is an indicator function defined as

lS() =

{
0,  ∈ S,

+∞, otherwise,

with S ∶= {|PΩ() = PΩ()}. It is well known that an optimal solution of (6) approaches an optimal solution of (5) as
𝛽 → +∞.

3.2 The DC algorithm

We develop a DC algorithm to solve the model (6). Via linearizing the part of Q
𝜃1() at k and Ψ

𝜃2() at k, the DC
algorithm generates the next iteratek+1 ∶=

(


k+1
,

k+1
,

k+1
,

k+1
,

k+1) by solving the problem

min L
(
 ;k) ∶=lS() + 𝜆AU

𝜃1

(
;k) + 𝜆HU

𝜃1

(
;k) + 𝜆V U

𝜃1

(
 ;k)

+ 𝜆D
(
‖‖1 − Ψ𝜃2(

k) −
⟨
∇Ψ

𝜃2(
k), −k⟩)

+ 𝛽

2
‖W − {,, ,}‖2 + 𝛾

2
‖
‖
‖
 −k‖‖

‖

2
,

(7)

where U
𝜃1

(
;k) = ‖‖∗ − Q

𝜃1

(


k) −
⟨
∇Q

𝜃1

(


k)
, − k⟩, ‖‖ =

√
‖‖2 + ‖‖2 + ‖‖2 + ‖‖2 + ‖‖2 and 𝛾 > 0.

Then,, ,  , , and  are alternately updated as

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩


k+1 = arg min



L
(
,

k
,

k
,

k
,

k;k)
,


k+1 = arg min



L
(


k+1
,,

k
,

k
,

k;k)
,


k+1 = arg min



L
(


k+1
,

k+1
, ,

k
,

k;k)
,


k+1 = arg min



L
(


k+1
,

k+1
,

k+1
,,

k;k)
,


k+1 = arg min



L
(


k+1
,

k+1
,

k+1
,

k+1
, ;k)

.

(8)

Below, we give the details of updating each minimizing subproblem.
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Step 1, the-subproblem at the kth iteration is


k+1 = arg min



𝜆A
(
||||∗ −

⟨
𝛻Q

𝜃1

(


k)
,

⟩)
+ 𝛽

2
‖
‖
‖
 − ̂

k‖
‖
‖

2
+ 𝛾

2
‖
‖
‖
 −k‖‖

‖

2
, (9)

where Wk ∶=
{
̂

k
,
̂

k
,
̂

k
,
̂

k}. A closed-form solution of (9) can be obtained by a tensor singular value shrinkage
(t-SVT) operator,37 that is,


k+1 = t − SVT 𝜆A

𝛽+𝛾

(
𝛽
̂

k + 𝛾k + 𝜆A∇Q
𝜃1

(


k)

𝛽 + 𝛾

)

. (10)

Step 2, similar to the case discussed in-subproblem, updating and  by


k+1 = t-SVT 𝜆H

𝛽+𝛾

(
𝛽
̂

k + 𝛾k + 𝜆H∇Q
𝜃1

(


k)

𝛽 + 𝛾

)

, (11)


k+1 = t-SVT 𝜆V

𝛽+𝛾

(
𝛽
̂

k + 𝛾k + 𝜆V∇Q
𝜃1

(


k)

𝛽 + 𝛾

)

. (12)

Step 3, by soft-thresholding operator, we can update by


k+1 = sgn

(


k) ◦max
{

|k| − 𝜆D

𝛽 + 𝛾
, 0
}

, (13)

where k = 1
𝛽+𝛾

(
𝛽
̂

k + 𝛾k + 𝜆D∇Ψ𝜃2(
k)
)

.
Step 4, updating  by


k+1 = PΩC

(
𝛽W−1 {


k+1
,

k+1
,

k+1
,

k+1} + 𝛾k

𝛽 + 𝛾

)

+ PΩ () . (14)

Finally, our algorithm is summarized in Algorithm 1.

Algorithm 1. Tensor completion under wavelet transform (WTTC)

Require: The tensor data ∈ R
n1×n2×n3 , the observed set Ω and parameter 𝛽, 𝛾 .

while not converge do
Step 1. Updatek+1 by (10).
Step 2. Updatek+1 by (11).
Step 3. Update k+1 by (12).
Step 4. Updatek+1 by (13).
Step 5. Update k+1 by (14).
Let k ∶= k + 1 and go to Step 1.

end while
Ensure: k+1.

3.3 Complexity analysis

Let ñ1 = ⌈n1∕2⌉ and ñ2 = ⌈n2∕2⌉. Computing , , and  cost O (ñ1ñ2n3 min(ñ1,ñ2)) at each iteration. The computa-
tion complexity of updating  and  are O (ñ1ñ2n3) and O (4ñ1ñ2n3), respectively. So the total cost at each iteration is
O (ñ1ñ2n3 min(ñ1,ñ2)).
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3.4 Convergence analysis

In this subsection, we establish global convergence of the WTTC for (6). Before proving the convergence of the proposed
Algorithm 1, we first present some lemmas.

Lemma 2. (Sufficient decrease condition). The sequences
{


k}

k∈N
generated by WTTC own the following properties:

(i) L
(


k+1) − L
(


k)
≤ − 𝛾

2
‖
‖

k+1 −k‖
‖

2;
(ii) lim

k→+∞
‖
‖

k+1 −k‖
‖ = 0.

Proof. (i) From the definition of L (), it can be seen that

L () − L
(
 ;k) = 𝜆Af

𝜃1

(
;k) + 𝜆Hf

𝜃1

(
;k) + 𝜆V f

𝜃1

(
 ;k) + 𝜆Dh

𝜃2

(
;k) − 𝛾

2
‖
‖
‖
 −k‖‖

‖

2
,

where

f
𝜃1

(
;k) = Q

𝜃1

(


k) − Q
𝜃1 () +

⟨
∇Q

𝜃1

(


k)
, − k⟩

,

and

h
𝜃2

(
;k) = Ψ

𝜃2(
k) − Ψ

𝜃2() +
⟨
∇Ψ

𝜃2(
k), −k⟩

.

On the other hand, from the convexity of Q
𝜃1 () and Ψ

𝜃2(), we can get f
𝜃1

(
;k)

≤ 0 and h
𝜃2

(
;k)

≤ 0. Thus,

L () − L
(
 ;k)

≤ −𝛾
2
‖
‖
‖
 −k‖‖

‖

2
. (15)

From (8), we have

L
(


k+1;k)
≤ L

(


k;k) = L
(


k)
. (16)

Combining (15) and (16), we have

L
(


k+1) − L
(


k)
≤ −𝛾

2
‖
‖
‖


k+1 −k‖‖
‖

2
, (17)

which completes the proof of this statement.
(ii) Summing up (17) for k = 1, 2, … ,N − 1, we have

N−1∑

k=1

‖
‖
‖


k+1 −k‖‖
‖

2
≤

2
𝛾

(
L
(


1) − L
(


N))
. (18)

We then obtain that
{

L
(


k)}

k∈N
is convergent from (i) and L

(


k)
> 0. Letting N → +∞ in (18), we obtain that

+∞∑

k=1

‖
‖
‖


k+1 −k‖‖
‖

2
< +∞.

Thus, limk→+∞ ‖
‖

k+1 −k‖
‖ = 0. ▪

Lemma 3. (Relative error condition). Let the sequences
{


k}

k∈N
generated by WTTC. For each positive integer k,

define


k+1


= 𝜆A
(
∇Q

𝜃1

(


k) − ∇Q
𝜃1

(


k+1)) + 𝛽
(
̂

k − ̂
k+1) + 𝛾

(


k −k+1)
,


k+1


= 𝜆H
(
∇Q

𝜃1

(


k) − ∇Q
𝜃1

(


k+1)) + 𝛽
(
̂

k − ̂
k+1) + 𝛾

(


k −k+1)
,


k+1


= 𝜆V
(
∇Q

𝜃1

(


k) − ∇Q
𝜃1

(


k+1)) + 𝛽
(
̂

k − ̂
k+1) + 𝛾

(


k − k+1)
,
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
k+1


= 𝜆D
(
∇Ψ

𝜃2

(


k) − ∇Ψ
𝜃2

(


k+1)) + 𝛽
(
̂

k − ̂
k+1) + 𝛾

(


k −k+1)
,


k+1


= 𝛾
(


k − k+1)
. (19)

Then
(


k+1

,

k+1

,

k+1

,

k+1

,

k+1


)
∈ 𝜕L

(


k+1) and there exists m > 0 such that

‖
‖
‖

(


k+1

,

k+1

,

k+1

,

k+1

,

k+1


)‖
‖
‖
≤ m ‖

‖
‖


k+1 −k‖‖
‖
.

Proof. From (9), we have

𝜆A
(


k+1 − ∇Q
𝜃1

(


k)) + 𝛽
(


k+1 − ̂
k
)
+ 𝛾

(


k+1 −k) = 0 (20)

for some k+1 ∈ 𝜕 ‖‖k+1‖
‖∗. Combining (19) and (20) and recalling the definition of L (), one has


k+1


= 𝜆
(
∇Q

𝜃1

(


k) − ∇Q
𝜃1

(


k+1)) + 𝛽
(
̂

k − ̂
k+1) + 𝛾

(


k −k+1)

+ 𝜆A
(


k+1 − ∇Q
𝜃1

(


k)) + 𝛽
(


k+1 − ̂
k) + 𝛾

(


k+1 −k)

= 𝜆A
(


k+1 − ∇Q
𝜃1

(


k+1)) + 𝛽
(


k+1 − ̂
k+1)

∈ 𝜕L
(


k+1)
.

Similarly, we have k+1


∈ 𝜕L
(


k+1), k+1


∈ 𝜕L
(


k+1), k+1


∈ 𝜕L
(


k+1) and k+1


∈ 𝜕L
(


k+1). Thus, one has
(


k+1

,

k+1

,

k+1

,

k+1

,

k+1


)
∈ 𝜕L

(


k+1).
From Theorem 3.10 in Reference 38, there exists m̃ > 0 such that

‖
‖
‖
∇Q

𝜃1

(


k) − ∇Q
𝜃1

(


k+1)‖‖
‖
≤ m̃ ‖

‖
‖


k + k+1‖‖
‖
. (21)

Since ∇Ψ
𝜃2 is Lipschitz continuous and the Lipschitz constant is 1∕𝜃2, we get

‖
‖
‖
∇Ψ

𝜃2

(


k) − ∇Ψ
𝜃2

(


k+1)‖‖
‖
≤

1
𝜃2

‖
‖
‖


k +k+1‖‖
‖
. (22)

Combining (21) with (22) and (19), we obtain

‖
‖
‖

(


k+1

,

k+1

,

k+1

,

k+1

,

k+1


)‖
‖
‖
≤ (𝜆 + 𝛽 ‖W‖ + 𝛾) ‖‖

‖


k+1 −k‖‖
‖
,

where 𝜆 = max {𝜆Am̃, 𝜆Hm̃, 𝜆V m̃, 𝜆D∕𝜃2}. By letting m = 𝜆 + 𝛽 ‖W‖ + 𝛾 , we complete the proof of this statement. ▪

Lemma 4. The function L() is a Kurdyka–Łojasiewicz (KL) function.

Proof. By Reference 12, ‖‖∗ is semi-algebraic. Furthermore, References 39 and 40 prove that the Frobenius norm || ⋅ ||
and minimax concave penalty function are semi-algebraic functions. Thus, L() is semi-algebraic since it is the finite
sum of semi-algebraic functions. As L() is also a proper continuous function, we know from Theorem 3 in Reference
41 that L() is a KL function, which completes the proof of this statement. ▪

Finally, we present the convergence results of Algorithm 1.

Theorem 1. Assume that L() is the objective function and the sequence
{


k}

k∈N
generated by Algorithm 1 is bounded.

Then the generated sequence
{


k}

k∈N
converges to some critical point of L().

Proof. The boundedness of sequence
{


k}

k∈N
admits a converging subsequence, combining which with continuity of

L(), Lemma 2, Lemma 3, and Lemma 4, we obtain the conclusion according to Theorem 2.9 in Reference 42. The desired
result is obtained. ▪
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4 NUMERICAL EXPERIMENTS

In this section, we conduct some experiments on real-world dataset to compare the performance of WTTC to show
their validity. We employ the peak signal-to-noise rate (PSNR),43 the structural similarity (SSIM),43 the feature similar-
ity (FSIM)44 and the recovery computation time to measure the quality of the recovered results. We compare WTTC for
the tensor completion problem with four existing methods, including PSTNN,34 TNN,25 HaLRTC,22 and NTD.24 WTTC,
PSTNN and TNN are specialized to third-order tensors. As (10), (11), (12) and (13) show, we can parallely update, ,
 , and, but for fair comparison of algorithm running time, we still employ the serial updating scheme in our code. All
methods are implemented on the platform of Windows 11 and Matlab (R2020b) with an Intel(R) Core(TM) i5-12500H
CPU at 2.50 GHz and 16 GB RAM.

4.1 Stopping criterion

To measure the precision of the optimal solution obtained by Algorithm 1, we used the relative KKT residual 𝜉 =
max {𝜉, 𝜉 , 𝜉 , 𝜉} with

𝜉 =
‖
‖
‖
 − t − SVT

𝜆A∕𝛽
(
̂ + 𝜆A∇Q

𝜃1 () ∕𝛽
)‖
‖
‖

1 + ‖
‖
‖
̂
‖
‖
‖
+ ‖
‖𝜆A∇Q

𝜃1 () ∕𝛽‖‖
, 𝜉 =

‖
‖
‖
 − t − SVT

𝜆H∕𝛽
(
̂ + 𝜆H∇Q

𝜃1 () ∕𝛽
)‖
‖
‖

1 + ‖
‖
‖
̂
‖
‖
‖
+ ‖
‖𝜆H∇Q

𝜃1 () ∕𝛽‖‖
,

𝜉 =
‖
‖
‖
 − t − SVT

𝜆V∕𝛽
(
̂ + 𝜆V∇Q

𝜃1 () ∕𝛽
)‖
‖
‖

1 + ‖
‖
‖
̂
‖
‖
‖
+ ‖
‖𝜆V∇Q

𝜃1 () ∕𝛽‖‖
, 𝜉 =

‖ − sgn () ◦max {|| − 𝜆D∕𝛽, 0}‖

1 + ‖
‖
‖
̂
‖
‖
‖
+ ‖
‖𝜆D∇Ψ𝜃2 () ∕𝛽‖‖

,

where W ∶=
{
̂, ̂, ̂ , ̂

}
and  =

(
̂ + 𝜆D∇Ψ𝜃2()∕𝛽

)
.

In all experiments, the termination precision is set to be 1e − 4 and the maximum iteration steps is set to be 150.

4.2 Parameters setting

In this subsection, taking the completion of “Wall” image1 as an example, we evaluate the performance of the proposed
method with different parameters 𝜆A, 𝜆H , 𝜆V , 𝜆D, and 𝜃1, 𝜃2 setting. The sampling rate (SR) is set as 30%.

4.2.1 Regularization parameters 𝜆A, 𝜆H , 𝜆V , 𝜆D setting

In this part, we fix 𝜃1 = 30, 𝜃2 = 1. The quantitative metrics of the results obtained by the proposed method with different
regularization parameters setting are reported in Figures 3 and 4. Firstly, 𝜆D is selected from {0.1, 1, 9}. Meanwhile, 𝜆A
and 𝜆H , 𝜆V are chosen from 1 to 9. From Figure 3, we can find that the recovery effect of 𝜆D = 1, 9 are better than that
of 𝜆D = 0.1, and when 𝜆D = 1, 9, the recovery effect of 𝜆A = 𝜆H = 𝜆V is better than that of 𝜆A is not equal to 𝜆H = 𝜆V .
Therefore, in the later analysis, we set 𝜆A = 𝜆H = 𝜆V . From Figure 4, we can find that setting 𝜆A = 𝜆H = 𝜆V = {2, 3} and
𝜆D = {3, 5, 9} is a good choice.

4.2.2 Parameters 𝜃1, 𝜃2 Setting

In this part, we fix 𝜆A = 𝜆H = 𝜆V = 2 and 𝜆D = 5. We set 𝜃1 from 10 to 100 and 𝜃2 from 0.1 to 1. From Figure 5, we can
find that 𝜃1 = 20, 𝜃2 = 0.6 is the best choice.

According to Sections 4.2.1 and 4.2.2, we set 𝜆A = 𝜆H = 𝜆V = 2, 𝜆D = 5, 𝜃1 = 20, 𝜃2 = 0.6 in the follows experiments.

4.3 Color image inpainting

In this subsection, we use the USC-SIPI image database2 to evaluate our proposed method WTTC for color image
inpainting. In our test, four images are randomly selected from this database, including “House” and “Peppers” with
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F I G U R E 3 The peak signal-to-noise rate, structural similarity, feature similarity, and time of the recovery results by the proposed
method with different regularization parameter 𝜆A, 𝜆H , 𝜆V , and 𝜆D settings. From top to bottom are, respectively, corresponding to
𝜆D = 0.1, 1, 9

F I G U R E 4 The peak signal-to-noise rate, structural similarity, feature similarity, and time of the recovery results by the proposed
method with different regularization parameter 𝜆A, 𝜆H , 𝜆V , and 𝜆D settings

F I G U R E 5 The peak signal-to-noise rate, structural similarity, feature similarity, and time of the recovery results by the proposed
method with different parameter 𝜃1, 𝜃2 settings
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F I G U R E 6 Examples of color image inpainting with SR = 30%. From top to bottom are respectively corresponding to “House,”
“Peppers,” “Beans,” and “Wall.” (a) Original; (b) Observed; (c) WTTC; (d) PSTNN; (e) TNN; (f) HaLRTC; (g) NTD
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T A B L E 1 Color image inpainting performance comparison: peak signal-to-noise rate (PSNR), structural similarity (SSIM), feature
similarity (FSIM), and time

SR = 10% SR = 20% SR = 30%

Image Methods PSNR SSIM FSIM Time PSNR SSIM FSIM Time PSNR SSIM FSIM Time

House WTTC 22.717 0.589 0.851 5.088 25.484 0.732 0.919 4.826 27.621 0.815 0.951 4.818

PSTNN 20.894 0.476 0.807 26.026 23.860 0.639 0.887 31.922 26.201 0.749 0.931 15.239

TNN 20.535 0.457 0.801 80.707 23.647 0.629 0.883 97.749 26.121 0.747 0.930 99.148

HaLRTC 20.512 0.494 0.788 15.390 23.525 0.655 0.873 68.541 25.950 0.766 0.923 45.241

NTD 18.923 0.384 0.733 13.573 21.284 0.519 0.803 13.088 23.013 0.618 0.853 13.641

Sailboat WTTC 21.420 0.473 0.829 4.832 24.005 0.614 0.900 5.008 25.697 0.699 0.933 4.745

PSTNN 19.457 0.364 0.800 33.102 22.316 0.527 0.878 31.826 24.295 0.635 0.918 22.515

TNN 19.100 0.345 0.794 82.774 22.000 0.510 0.873 95.187 24.147 0.628 0.916 52.036

HaLRTC 19.321 0.413 0.794 84.783 22.137 0.564 0.872 12.112 24.356 0.681 0.917 10.973

NTD 18.029 0.336 0.739 13.677 20.655 0.475 0.818 10.351 22.140 0.572 0.861 7.758

Peppers WTTC 22.902 0.487 0.814 5.158 26.333 0.652 0.904 5.018 28.317 0.731 0.942 4.922

PSTNN 19.864 0.320 0.773 35.389 23.799 0.522 0.872 14.819 26.257 0.641 0.920 14.520

TNN 19.144 0.295 0.768 59.508 23.199 0.491 0.865 41.981 25.927 0.625 0.916 52.313

HaLRTC 19.832 0.401 0.797 50.324 23.735 0.579 0.884 10.571 26.452 0.700 0.929 13.847

NTD 18.227 0.303 0.737 7.655 21.226 0.467 0.815 7.873 22.710 0.560 0.856 10.904

Beans WTTC 22.754 0.704 0.749 1.230 26.582 0.831 0.843 1.174 29.128 0.888 0.896 1.270

PSTNN 19.970 0.561 0.678 3.935 23.664 0.732 0.783 3.685 26.549 0.820 0.848 3.467

TNN 19.709 0.534 0.667 10.732 23.247 0.706 0.767 24.773 26.223 0.805 0.837 21.240

HaLRTC 19.835 0.576 0.697 2.712 23.496 0.748 0.794 3.312 26.658 0.842 0.863 2.567

NTD 18.653 0.383 0.614 8.587 21.897 0.559 0.713 9.035 25.081 0.708 0.799 6.877

Wall WTTC 23.431 0.582 0.777 1.216 27.026 0.749 0.865 1.221 29.535 0.829 0.909 1.218

PSTNN 20.818 0.394 0.710 3.687 25.054 0.626 0.827 3.538 27.922 0.747 0.884 3.470

TNN 20.639 0.388 0.707 20.996 24.740 0.606 0.819 9.261 27.777 0.740 0.880 9.100

HaLRTC 20.710 0.481 0.736 2.686 24.352 0.664 0.828 2.301 27.082 0.774 0.879 2.242

NTD 20.116 0.358 0.680 8.592 23.504 0.548 0.780 4.930 26.003 0.672 0.838 4.862

Note: The boldface number is the best.

512 × 512 × 3 pixels, “Beans” and “Wall” with 256 × 256 × 3 pixels. The data of images are normalized in the range [0, 1].
The SRs are set as 10%, 20%, and 30%.

Figure 6 shows the results of the four inpainting tests under SR = 30%. Under each image, we show enlargements of a
demarcated patch and the corresponding error map (difference from the Original). Error maps with less color information
indicate better restoration performance. At the same time, we also give a graph of some pixels in the enlarged area. The
higher the fitting degree of the two curves, the better the recovery effect. As one can see, images recovered by NTD was
the least effective, and it yielded a recovery that only recovered the coarse structure, producing significant blurring and
artifacts. By comparison with NTD method, HaLRTC, TNN, and PSTNN recover some details, but do not alleviate the
blurriness. Compared to other methods, WTTC produces the most visually appealing results with clear and sharp spatial
details, because it solves the main part and the detail part of tensors separately.

In Table 1, we present the PSNR/SSIM/FSIM values and running time for different methods of recovering color images
under different SRs. Compared to other methods, the proposed WTTC consistently outperforms them in PSNR, SSIM,
and FSIM, as well as running time. More precisely, WTTC performs the best with at least 1.5 dB improvement upon the
PSNR metric and two times faster than the second fastest method.
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F I G U R E 7 Examples of magnetic resonance imaging inpainting with SR = 20%. From top to bottom: the images located at the 20th
frontal slice and 40th frontal slice, respectively. (a) Original; (b) Observed; (c) WTTC; (d) PSTNN; (e) TNN; (f) HaLRTC; (g) NTD

T A B L E 2 MRI inpainting performance comparison: peak signal-to-noise rate (PSNR), structural similarity (SSIM), feature similarity
(FSIM) and Time

SR = 5% SR = 10% SR = 20%

Methods PSNR SSIM FSIM Time PSNR SSIM FSIM Time PSNR SSIM FSIM Time

WTTC 23.639 0.607 0.805 17.823 26.234 0.715 0.856 13.594 29.634 0.837 0.914 12.370

PSTNN 21.515 0.470 0.759 31.402 24.677 0.645 0.830 30.303 28.198 0.797 0.897 29.117

TNN 21.551 0.488 0.764 55.905 24.256 0.634 0.824 55.473 27.889 0.790 0.893 56.805

HaLRTC 15.844 0.299 0.637 16.947 19.156 0.457 0.725 9.128 23.595 0.687 0.833 4.164

NTD 19.132 0.390 0.711 6.218 21.015 0.504 0.752 6.504 22.878 0.603 0.799 6.651

1 Note: The boldface number is the best.

4.4 MRI inpainting

We evaluate the performance of the proposed method and the compared methods on the MRI3 data, which is of size
217 × 181 × 181, and the first 50 of which are used to construct the third-order tensor due to the computational limitation.
The SRs are set as 5%, 10% and 20%.

From Figure 7 and Table 2, we can see that WTTC outperforms other methods on all of them. The Tucker rank-based
method HaLRTC and NTD have poor effect on restoring images. TNN, PSTNN, and WTTC are based on recent research on
the decomposition of a tensor and avoid the loss of structure information, resulting in better inpainting results. However,
the method based on TNN and PSTNN needs to perform SVD on ⌈(n3 + 1)∕2⌉ matrices of size n1 × n2 in each iteration, so
as n3 increases, the running time required by the method based on TNN and PSTNN increases a lot. The WTTC method
changes the size of the matrix from n1 × n2 to ⌈n1∕2⌉ × ⌈n2∕2⌉ through wavelet transformation, thus greatly reducing the
time required for SVD. At the same time, the wavelet transform separates the main part and the detail part of the tensor,
so a better recovery effect is obtained.
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F I G U R E 8 Examples of video inpainting with SR = 20%. From top to bottom are respectively corresponding to “Bus,” “Tempete,”
“Suzie,” and “Foreman.” (a) Original; (b) Observed; (c) WTTC; (d) PSTNN; (e) TNN; (f) HaLRTC; (g) NTD

4.5 Video inpainting

We evaluate our method on the widely used YUV Video Sequences4. Each sequence contains at least 150 frames and we
use the first 50 frames of the sequences. In the experiments, we test our method and other methods on six videos. The
frame sizes of the first three videos are 288 × 352 pixels and that of the last three are 144 × 176 pixels. The SRs are set as
10%, 20%, and 30%.

As shown in Figure 8, each test video is shown at the eighth frame. Based on the results of the six tests, WTTC performs
better at filling in the missing values. It is better able to deal with the details of the frames. The PSNR, SSIM, and FSIM
metrics also shows the best results with WTTC, consistent with Table 3. From time consumption, WTTC uses similar
running time as HaLRTC and NTD. In addition, it is about four times faster than PSTNN and 10 times faster than TNN.
Those reasons have been discussed above. These results indicate that WTTC performs tensor completion better and runs
more efficiently and are consistent with the results for MRI inpainting.

In addition, Figure 9 displays the PSNR, SSIM, FSIM values of each frontal slice of Video “Bus” and “Suzie.” As
observed, in all frontal slices, the PSNR, SSIM, and FSIM metrics of the proposed WTTC are much higher than those of
the other compared methods.

5 CONCLUSIONS

In this paper, we develop a nonconvex optimization model for third-order tensor completion under wavelet trans-
form. The traditional tensor completion method recoveries the entire large tensor as a whole. When the dimension
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T A B L E 3 Video inpainting performance comparison: peak signal-to-noise rate (PSNR), structural similarity (SSIM), feature
similarity (FSIM), and time

SR = 10% SR = 20% SR = 30%

Video Methods PSNR SSIM FSIM Time PSNR SSIM FSIM Time PSNR SSIM FSIM Time

Bus WTTC 20.471 0.471 0.738 18.478 22.423 0.609 0.803 12.084 24.122 0.708 0.851 12.261

PSTNN 19.693 0.410 0.713 73.539 21.577 0.550 0.782 111.153 23.219 0.656 0.831 67.566

TNN 19.471 0.395 0.705 174.847 21.424 0.541 0.777 169.464 23.147 0.652 0.829 175.109

HaLRTC 17.241 0.388 0.592 14.504 19.468 0.525 0.690 11.437 21.115 0.634 0.761 8.567

NTD 18.274 0.384 0.631 12.621 19.331 0.483 0.688 13.179 20.219 0.559 0.733 13.899

Tempete WTTC 22.787 0.613 0.803 22.147 25.029 0.748 0.866 19.085 26.872 0.824 0.904 11.851

PSTNN 22.136 0.566 0.783 73.113 24.406 0.711 0.852 71.209 26.414 0.801 0.895 68.728

TNN 21.896 0.549 0.776 169.549 24.236 0.702 0.848 175.979 26.322 0.797 0.894 176.696

HaLRTC 19.062 0.438 0.663 15.164 21.282 0.594 0.762 10.421 23.099 0.708 0.827 7.976

NTD 19.699 0.426 0.686 12.595 20.818 0.526 0.739 13.371 21.768 0.601 0.782 13.736

Stefan WTTC 20.223 0.522 0.760 18.607 22.008 0.650 0.825 11.927 23.518 0.737 0.869 11.978

PSTNN 19.703 0.464 0.728 120.144 21.341 0.593 0.799 88.572 22.848 0.690 0.848 83.054

TNN 19.571 0.451 0.721 173.245 21.248 0.585 0.795 209.868 22.805 0.687 0.847 195.395

HaLRTC 18.211 0.485 0.591 12.499 20.002 0.617 0.710 11.172 21.669 0.725 0.794 8.656

NTD 18.228 0.406 0.617 12.523 19.298 0.506 0.690 21.849 20.269 0.592 0.747 23.822

Carphone WTTC 28.194 0.841 0.907 7.180 30.506 0.896 0.938 7.511 32.079 0.925 0.955 7.837

PSTNN 27.595 0.812 0.898 42.355 29.806 0.873 0.930 19.930 31.449 0.907 0.949 18.591

TNN 27.213 0.799 0.893 40.885 29.628 0.868 0.928 41.294 31.389 0.906 0.949 41.069

HaLRTC 22.481 0.695 0.828 3.547 25.913 0.816 0.890 2.346 28.607 0.886 0.928 1.985

NTD 23.081 0.634 0.803 5.403 25.029 0.720 0.847 5.670 26.175 0.773 0.874 5.826

Suzie WTTC 28.792 0.799 0.891 8.691 31.549 0.871 0.929 7.338 33.489 0.910 0.951 7.770

PSTNN 27.404 0.751 0.877 74.044 30.238 0.840 0.918 19.263 32.347 0.888 0.942 18.489

TNN 27.003 0.737 0.871 119.241 30.020 0.834 0.916 41.105 32.264 0.886 0.941 41.785

HaLRTC 23.726 0.682 0.818 5.546 27.424 0.799 0.883 2.493 30.065 0.867 0.921 2.173

NTD 24.099 0.612 0.811 5.282 26.373 0.712 0.855 5.628 28.120 0.775 0.885 6.038

Foreman WTTC 25.327 0.696 0.824 7.513 27.780 0.798 0.879 6.772 29.617 0.856 0.912 7.272

PSTNN 24.134 0.626 0.803 73.548 26.743 0.751 0.865 21.720 28.906 0.827 0.905 35.034

TNN 23.776 0.606 0.796 121.072 26.547 0.742 0.861 44.257 28.817 0.824 0.903 82.478

HaLRTC 19.710 0.485 0.714 5.491 23.043 0.660 0.804 3.739 25.799 0.782 0.867 1.959

NTD 19.802 0.425 0.709 11.083 21.312 0.518 0.748 5.807 22.945 0.603 0.784 11.655

Note: The boldface number is the best.
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F I G U R E 9 All frontal slices obtained by different methods on the video “Carphone” and “Foreman” with SR = 30%

of the tensor is large, the recovery efficiency of the traditional method is often low. To overcome this defect, we
divide a large tensor into four small tensors using wavelet transform. These four small tensors are a main part and
three detail parts of the original tensor, and the size of each small tensor is about a quarter of the original tensor.
In this way, we transform a large tensor completion problem into four small tensor completion problems, which
greatly improves the efficiency of the algorithm. Since we recover the main part and the detail part of the ten-
sor separately, compared with the traditional method, the recovery effect of the algorithm is also improved. At the
same time, we introduce a nonconvex function to better relax the TNN and l1-norm of the tensor. The experimen-
tal results demonstrated that our proposed models and methods led to impressive improvements over state-of-the-art
methods.
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