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a b s t r a c t 

Recently, the convex low-rank 3rd-order tensor recovery has attracted considerable attention. However, 

there are some limitations to the convex relaxation approach, which may yield biased estimators. To over- 

come this disadvantage, we develop a novel non-convex tensor pseudo-norm to replace the weighted sum 

of the tensor nuclear norm as a tighter rank approximation. Then in tensor robust principle component 

analysis, we introduce the noise analysis to separate the spare foreground from the dynamic background 

more accurately. Furthermore, by introducing a spatio-temporal matrix, we can make better use of the 

inherent spatio-temporal characteristics of the low-rank static background and sparse foreground. Finally, 

we introduce an incoherent term to constrain the sparse foreground and the dynamic background to im- 

prove the separability. Some preliminary numerical examples of color image, video, and face image data 

sets are presented to illustrate the efficiency of our proposed methods. 

© 2023 Published by Elsevier Ltd. 
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. Introduction 

Recently, a great deal of mathematical effort s has been devoted 

o tensors, which is a high-order extension of the matrix as an 

mportant data format for multi-dimensional data applications, 

uch as traffic data imputation [1,2] , multi-class learning [3] , 

yperspectral image denoising [4] , color image and gray video 

ecovery [5–7] , magnetic resonance imaging (MRI) data recov- 

ry [8,9] , submodule clustering [10] , anomaly detection [11] , 

igh dimensional signal processing [12] and multilinear subspace 

earning [13] . Due to the damage to the collection equipment, the 

nterference of noise, and the difficulty of data collection, the col- 

ected data are often incomplete or grossly corrupted. Thus, we are 

oncerned in this paper with the 3rd-order tensor recovery prob- 

em, drawing upon recent advances in low-rank tensor completion 

LRTC) and tensor robust principal component analysis (TRPCA). 

The LRTC problem is to find a low-rank tensor from observed 

ncomplete data. Accordingly, its mathematical model is written as 

in 

X 
rank (X ) , s.t. P �(X ) = P �(M ) , (1.1) 
∗ Corresponding author. 
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here rank (·) is a tensor rank and � is an index set locating the 

bserved data. P � is a projection operator that keeps the entries of 

 in � and sets all others to zero. 

Different tensor ranks lead to different LRTC models of 

1.1) with different methods. With an eye towards application, 

any researchers have studied the CANDECOMP/PARAFAC (CP) 

ank and Tucker rank, which corresponds to CP decomposition [14] , 

lock term decomposition [15] and Tucker decomposition [16] , re- 

pectively. The computation of CP rank is an NP-hard problem [17] , 

ut the Tucker rank can be obtained directly by unfolding the 

ensor in matrices to calculate the matrix ranks. Therefore, the 

RTC problem is mostly based on Tucker rank. For example, Li 

t al. [18] have developed tensor nuclear norm-based methods to 

imultaneously recover both low Tucker rank and sparse tensors 

rom various degraded observations. Li et al. [19] apply the alter- 

ating direction method of multipliers (ADMM) based on exact and 

nexact iteratively reweighted algorithms to solve non-convex � p - 

orm relaxation model for low Tucker rank tensor recovery prob- 

em. However, the model based Tucker rank needs direct unfolding 

rst, which will destroy the original internal structure of the 3D- 

rray data and lose some important information [20,21] . Recently, 

ased on the tensor-tensor product ( t -product) and tensor singular 

alue decomposition (t-SVD) [22] , Kilmer et al. [20] proposed the 

ensor multi-rank and tubal rank definitions. Subsequently, Zhang 

t al. [23] defined the tensor nuclear norm (TNN) based on t-SVD 

https://doi.org/10.1016/j.patcog.2023.109343
http://www.ScienceDirect.com
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Fig. 1. The contribution of different functions to the rank with respect to a varying singular value. The true rank is 1 for nonzero σi . 
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nd tensor tubal rank to solve the LRTC problem, which maintains 

he tensor structure more effectively than the direct unfolding. 

Recently, some non-convex surrogate functions based on tubal 

ank also have been used to approximate the rank function. For 

xample, Jiang et al. [24] defined the partial sum of TNN (PSTNN). 

ai et al. [25] developed a new t -Gamma tensor quasi-norm. 

ang et al. [26] presented the weighted Schatten function. Chen 

t al. [27] and Yang et al. [28] proposed the weighted Schatten- p

unction. However, they only considered the tubal rank of mode- 

 and ignored the tubal ranks of mode-1 and mode-2. Zheng 

t al. [29] generalize the TNN as a weighted sum of the tensor nu- 

lear norm (WSTNN) in a balanced way, which considers all modes 

f tensor together. But there is a gap between the rank function 

nd the nuclear norm, especially when the singular value is large, 

ee Fig. 1 . So the adoption of WSTNN usually leads to the approxi-

ation of the corresponding tensor N-tubal rank being insufficient. 

Another typical tensor recovery problem is the TRPCA prob- 

em, which aims to recover the low-rank component and sparse 

omponent from observations. More specifically, TRPCA based on 

-SVD [30] aims to recover the low tubal rank component X and 

o remove the hidden E resulted from the noisy observations O = 

 + E via the following optimization 

in 

X , E 
‖X ‖ TNN + λ‖E‖ 1 , s.t. O = X + E, (1.2) 

here λ is a balancing parameter, and the sparsity of E is charac- 

erized by the tensor � 1 norm. The TRPCA model [31–33] achieves 

he detection of moving targets by decomposing the video tensor 

into a low-rank background tensor X and a sparse moving fore- 

round target tensor E . However, in most cases, a video sequence 

s always captured with a complex background in which the fore- 

round objects may blend into the background [34] , such as wind- 

lowing leaves, waves, swaying vegetation, fountains, changes in 

ight, ripples on the water, flags flying in the wind and so on. Be- 

ause the background is not completely static (that is, the back- 

round also contains dynamic components), the performance of 

he foreground detection method will be affected by the dynamic 

ixel components in the background. It is easy to misjudge the dy- 

amic background as the foreground moving target, resulting in an 

ncomplete and empty edge of the foreground moving object de- 

ection [35] . 

As has been said, we are concerned in this paper with some 

ovel models for LRTC and TRPCA problems. For the LRTC prob- 

em, we extend the WSTNN and define a new tensor � 
p 
r pseudo- 

orm, which better approximates the rank of a 3rd-order ten- 

or, see Fig. 1 . For the TRPCA problem, traditional TRPCA is very 
2 
rone to voids in the process of background/foreground separation 

f complex scene videos and easy to misjudge the dynamic back- 

round as a moving target, which makes the separation effect not 

deal. In order to address this problem, we introduce noise analy- 

is and decompose the visual frequency sequence into three terms, 

ow-rank static background, sparse foreground, and dynamic back- 

round. In order to make better use of their own characteristics 

n the low-rank static background and sparse foreground (the pix- 

ls of adjacent two frontal slices of low-rank static background are 

asically the same, and the pixels of adjacent two horizontal slices 

nd lateral slices of the sparse foreground are very close), we in- 

roduce temporal and spatial matrix. At the same time, in order 

o more accurately separate the sparse foreground from the dy- 

amic background and prevent the moving objects from appearing 

n both sparse foreground and dynamic background, we introduce 

n incoherent term to constrain sparse foreground and dynamic 

ackground so as to improve the separability. Below is a summary 

f our main contributions: 

1) For the LRTC problem, we define a novel non-convex tensor 

pseudo-norm to replace the WSTNN as a tighter rank approxi- 

mation. Compared with WSTNN, the new tensor pseudo-norm 

approximates the tensor N-tubal rank better than WSTNN. 

2) For the TRPCA problem, we first introduce the noise analysis 

and decompose the visual frequency sequence into three terms, 

which are low-rank static background, sparse foreground, and 

dynamic background. This is beneficial to better extract fore- 

ground objects in complex scenes with a dynamic background. 

Then, we introduce the spatio-temporal matrix to make better 

use of the inherent spatio-temporal characteristics of low-rank 

static background and sparse foreground. Finally, we introduce 

an incoherent term to constrain the sparse foreground and the 

dynamic background to improve the separability. It will help us 

more accurately separate the sparse foreground from the dy- 

namic background and prevent the moving objects from ap- 

pearing in both the sparse foreground and the dynamic back- 

ground. 

The present paper is built up as follows. Section 2 reviews nota- 

ions, basic concepts and introduces the tensor � 
p 
r pseudo-norm. In 

ection 3 , based on the new tensor � 
p 
r pseudo-norm, a new model 

f LRTC is introduced and an alternating minimization method 

s proposed, where any accumulating point of the generated se- 

uence is a Karush-Kuhn-Tucker (KKT) point. In Section 4 , we im- 

rove the TRPCA model via � 
p 
r pseudo-norm and other novel meth- 

ds. Moreover, some numerical experiments on colorful image 
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ecovery, gray video recovery, face image shadow removal, and 

ackground modeling are reported in Sections 5 and 6 , which illus- 

rate the validity of our proposed models. We have also discussed 

he convergence behavior of our algorithms. Finally, the paper ends 

ith concluding remarks in Section 7 . 

. Preliminaries 

In this section, we first summarize some notations and propose 

 new 3rd-order tensor pseudo-norm. 

.1. Notations 

Throughout the paper, ℵ ( n ) = { 1 , 2 , . . . , n } for positive integer

 . We denote scalars by lowercase letters, e.g. a, b, c, . . . ; vectors

y boldface lowercase letters, e.g. a , b , c , . . . ; and matrices by up- 

ercase letters, e.g. A, B, C, . . . . 3rd-order tensors are denoted as 

alligraphic letters A , B, C, . . . . For a 3rd-order tensor A , we use

he Matlab notation A (i, : , :) , A (: , j, :) and A (: , : , k ) to denote its

 th horizontal, jth lateral and k th frontal slice, respectively. Let 

 = (A i jk ) ∈ R 

n 1 ×n 2 ×n 3 , then (A 

(i ) 
1 

) jk = (A 

( j) 
2 

) ik = (A 

(k ) 
3 

) i j = A i jk for

ll i ∈ ℵ ( n 1 ) , j ∈ ℵ ( n 2 ) and k ∈ ℵ ( n 3 ) . The inner product of two

ensors A , B ∈ R 

n 1 ×n 2 ×n 3 is the sum of the products of their en-

ries, i.e. 

 

A , B 〉 = 

n 1 ∑ 

i =1 

n 2 ∑ 

j=1 

n 3 ∑ 

k =1 

A i jk B i jk . 

he corresponding (Frobenius-) norm is ‖ A ‖ F = 

√ 〈 A , A 〉 . ‖ A ‖ ∞ 

epresents the maximum absolute value in A . A 

T and A 

−1 repre- 

ent the conjugate transpose and the inverse of A , respectively. I

epresents the identity matrix. For any u ∈ ℵ ( 3 ) , the u -mode ma-

rix product of a tensor A ∈ R 

n 1 ×n 2 ×n 3 with a matrix M u ∈ R 

J×n u is

enoted by A ×u M u with its entries 

A ×1 M 1 ) i 1 jk = 

n 1 ∑ 

i 1 =1 

A i jk (M 1 ) ii 1 , 

(A ×2 M 2 ) i j 1 k = 

n 2 ∑ 

j 1 =1 

A i jk (M 2 ) j j 1 , 

A ×3 M 3 ) i jk 1 = 

n 3 ∑ 

k 1 =1 

A i jk (M 3 ) kk 1 . 

.2. Basic concepts 

Now we review the Discrete Fourier Transformation (DFT), 

hich plays a core role in the tensor-tensor product. For A ∈ 

 

n 1 ×n 2 ×n 3 and u ∈ ℵ ( 3 ) , let Ā u ∈ C 

n 1 ×n 2 ×n 3 be the result of DFT of

 along the u th mode. Specifically, let F n u = [ f 1 , . . . , f n u ] ∈ R 

n u ×n u ,

here 

f l = 

[
ω 

0 ×(l−1) ;ω 

1 ×(l−1) ; . . . ;ω 

(n u −1) ×(l−1) 
]

∈ R 

n u , 

 = e 
− 2 πb 

n u and b = 

√ −1 . Then 

¯
 1 ( : , j, k ) = F n 1 A ( : , j, k ) , 

¯
 2 ( i, : , k ) = F n 2 A ( i, : , k ) , 

¯
 3 ( i, j, : ) = F n 3 A ( i, j, : ) , 

hich can be computed by Matlab command “Ā u = fft (A , [ ] , u ) ”.

urthermore, A can be computed by Ā u with the inverse DFT 

 = ifft ( Ā u , [ ] , u ) . We further define matrices Ā ∈ C 

n 1 n 2 ×n 1 n 3 , Ā ∈
1 2 

3 
 

n 1 n 2 ×n 2 n 3 , Ā 3 ∈ C 

n 1 n 3 ×n 2 n 3 as 

¯
 u = bdia g u 

(
Ā u 

)
= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

Ā 

( 1 ) 
u 

Ā 

( 2 ) 
u 

. . . 

Ā 

( n u ) 
u 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, ∀ u ∈ ℵ ( 3 ) . 

ere, bdiag u (·) is an operator which maps the tensor Ā u to the 

lock diagonal matrix Ā u . 

Based on these notations, mode- k t-product was introduced in 

36] . 

efinition 2.1. For A 1 ∈ R 

n 1 ×n 2 ×r 1 and B 1 ∈ R 

n 1 ×r 1 ×n 3 , define 

 1 ∗1 B 1 := f old 1 (bcirc 1 (A 1 ) · un f old 1 (B 1 )) ∈ R 

n 1 ×n 2 ×n 3 . 

or A 2 ∈ R 

n 1 ×n 2 ×r 2 and B 2 ∈ R 

r 2 ×n 2 ×n 3 , define 

 2 ∗2 B 2 := f old 2 (bcirc 2 (A 2 ) · un f old 2 (B 2 )) ∈ R 

n 1 ×n 2 ×n 3 . 

or A 3 ∈ R 

n 1 ×r 3 ×n 3 and B 3 ∈ R 

r 3 ×n 2 ×n 3 , define 

 3 ∗3 B 3 := f old 3 (bcirc 3 (A 3 ) · un f old 3 (B 3 )) ∈ R 

n 1 ×n 2 ×n 3 . 

ere un f old u (B u ) = [ B (1) 
u ; B (2) 

u ; . . . ; B (n u ) 
u ] , and its inverse operator

f old u ” is defined by f old u (un f old u (B u )) = B u . 

emma 2.1 ( [22] ) . Suppose that A , B are tensors such that F :=
 ∗u B ( u ∈ ℵ ( 3 ) ) is well defined as in Definition 2.1 . Then 

1) ‖A‖ 2 
F 

= 

1 
n u 

‖ ̄A u ‖ 2 F 
; 

2) F = A ∗u B and F̄ u = Ā u ̄B u are equivalent. 

From Lemma 2.1 , we can assert that the generalized tensor fac- 

orization can be computed by matrix factorization, which is com- 

utable. 

efinition 2.2 (Matrix. � 
p 
r pseudo-norm) Given X ∈ R 

m ×n and m ≤
 , the matrix � 

p 
r pseudo-norm is defined as 

 

X ‖ � 
p 
r 

:= ‖ 

X ‖ 

p 
r = 

m ∑ 

i =1 

(
( 1 + r ) σi ( X ) 

r + σi ( X ) 

)p 

, (2.1) 

here p ∈ (0 , 1) and r > 0 . 

Note that ‖ X ‖ p r → rank (X ) as p → 0 and γ → 0 , then ‖ X ‖ p r is a

on-convex approximation of rank function rank (X ) . Fig. 1 shows 

everal rank relaxations in the literature. Among them, the log- 

rithmic function log (x + ε) has been well studied [37] . When 

p = 1 , � 
p 
r degenerates to Kang et al. [38] . It can be seen from

ig. 1 that the matrix pseudo-norm we defined is very consis- 

ent with the real rank, and the nuclear norm deviates greatly 

hen the singular value deviates from 1. Therefore, the proposed 

 

p 
r pseudo-norm overcomes the imbalance penalty of different 

ingular values in the convex nuclear norm. 

Based on the DFT and the � 
p 
r pseudo-norm of the matrix, we 

aturally define the � 
p 
r pseudo-norm of the tensor. 

efinition 2.3 (Tensor. � 
p 
r pseudo-norm) The tensor � 

p 
r pseudo- 

orm of A ∈ R 

n 1 ×n 2 ×n 3 is defined as 

 

A ‖ � 
p 
r 

= 

3 ∑ 

u =1 

1 

n u 

∥∥Ā u 

∥∥
� 

p 
r 

= 

3 ∑ 

u =1 

1 

n u 

n u ∑ 

l=1 

∥∥Ā 

(l) 
u 

∥∥
� 

p 
r 

= 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥Ā 

(l) 
u 

∥∥p 

r 
. 

(2.2) 

heorem 2.2 ( [39] ) . Let Y ∈ R 

m ×n , m ≤ n has the singular value de-

omposition (SVD) Y = U Y Diag ( γ ) V  
Y 

. Then for each vector w ∈ R 

m 

nd a scalar α > 0 , X ∗ := S v (Y, w ) = U Y Diag ( s α( γ , w ) ) V  Y 
is an op-

imal solution of 

min 

∈ R m ×n 
f (X ) := α

m ∑ 

i =1 

w i σi ( X ) + 

1 

2 

‖ X − Y ‖ 

2 
F , 
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here s α( γ , w ) = sign ( γ ) max { 0 , || γ| −αw } . 
heorem 2.3 ( [30] ) . For each A ∈ R 

n 1 ×n 2 ×n 3 , Ā u ∈ C 

n 1 ×n 2 ×n 3 satis- 

es 

 

Ā 

( 1 ) 
u ∈ C 

n u 1 ×n u 2 , 

conj 

(
Ā 

( l ) 
u 

)
= Ā 

( n u −l+2 ) 
u , l = 2 , . . . , 

⌊
n u +1 

2 

⌋
. 

ere u, u 1 , u 2 ∈ ℵ ( 3 ) , u 1 < u 2 and u 1 , u 2 � = u . 

. Enhanced LRTC model via � 
p 
r pseudo-norm 

In this section, we establish a new tensor completion model 

ased on tensor � 
p 
r pseudo-norm. 

.1. Non-convex model of tensor completion 

Based on the tensor � 
p 
r pseudo-norm, the LRTC problem reads: 

min 

∈ R n 1 ×n 2 ×n 3 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
, s.t. P �( X − M ) = 0 . (3.1) 

s the low-rank prior may not be sufficient to recover the original 

ensor accurately [40] , we introduce a sparse prior into the tensor 

ompletion task. That is to solve the following optimization prob- 

em: 

min 

∈ R n 1 ×n 2 ×n 3 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
+ μ‖ 

X ‖ 1 , s.t. P �( X − M ) = 0 . 

(3.2) 

(3.2) is difficult to solve due to the interdependent norms. 

herefore, by introducing Y 1 , Y 2 , Y 3 such that Ȳ (l) 
u = X̄ (l) 

u , u ∈ 

 ( 3 ) , l ∈ ℵ ( n u ) , we can rephrase (3.2) as 

in 

X , Y u 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 
n u 

∥∥Ȳ (l) 
u 

∥∥p 

r 
+ μ‖ 

X ‖ 1 

.t. P �(X − M ) = 0 , Ȳ (l) 
u = X̄ 

(l) 
u , u ∈ ℵ ( 3 ) , l ∈ ℵ ( n u ) . 

(3.3) 

For any u ∈ ℵ ( 3 ) , l ∈ ℵ ( n u ) , denote K̄ 

(l) 
u as the Lagrange mul-

iplier corresponding to the linear equality constraint Ȳ (l) 
u = X̄ (l) 

u , 

hen the augmented Lagrangian of (3.3) is given as 

 ( X , Y 1 , Y 2 , Y 3 , K 1 , K 2 , K 3 , β) 

= 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥Ȳ (l) 
u 

∥∥p 

r 
+ μ‖ 

X ‖ 1 + 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

〈
K̄ 

(l) 
u , Ȳ (l) 

u − X̄ 

(l) 
u 

〉

+ 

3 ∑ 

u =1 

n u ∑ 

l=1 

β

2 n u 

∥∥Ȳ (l) 
u − X̄ 

(l) 
u 

∥∥2 

F 
. (3.4) 

ere β > 0 is the penalty parameter, and K u , u ∈ ℵ ( 3 ) as the La-

range multiplier. 

Now we are ready to update X , Y u and K u for all u ∈ ℵ ( 3 ) . Note

hat 

3 
 

 =1 

n u ∑ 

l=1 

1 

n u 

〈
K̄ 

(l) 
u , Ȳ (l) 

u − X̄ 

(l) 
u 

〉
+ 

3 ∑ 

u =1 

n u ∑ 

l=1 

β

2 n u 

∥∥Ȳ (l) 
u − X̄ 

(l) 
u 

∥∥2 

F 

= 

3 ∑ 

u =1 

1 

n u 

〈
K̄ u , Ȳ u − X̄ u 

〉
+ 

3 ∑ 

u =1 

β

2 n u 

∥∥Ȳ u − X̄ u 

∥∥2 

F 
(3.5) 

= 

3 ∑ 

u =1 

〈 K u , Y u − X 〉 + 

3 ∑ 

u =1 

β

2 

‖ 

Y u − X ‖ 

2 
F . 
4 
hus, the sub-problem to update X is: 

 

∗ = arg min 

P �( X−M ) =0 

μ‖X ‖ 1 + 

3 ∑ 

u =1 

〈K u , Y u − X 〉 + 

3 ∑ 

u =1 

β

2 

‖Y u − X ‖ 

2 
F 

= arg min 

P �( X−M ) =0 

μ‖X ‖ 1 + 

3 β

2 

‖X − 1 

3 

3 ∑ 

u =1 

(
Y u + 

K u 

β

)
‖ 

2 
F 

= P �( M ) + P �c 

(
s μ

3 β
( B, 1 ) 

)
, 

(3.6) 

here B = 

1 
3 

∑ 3 
u =1 

(
Y u + 

K u 
β

)
and 1 represents a vector whose el- 

ments are all 1. 

Then, we update Ȳ (l) 
u for all u ∈ ℵ ( 3 ) and l ∈ ℵ ( n u ) , that is 

in 

Ȳ (l) 
u 

∥∥Ȳ (l) 
u 

∥∥p 

r 
+ 

〈
K̄ 

(l) 
u , Ȳ (l) 

u − X̄ 

(l) 
u 

〉
+ 

β

2 

∥∥Ȳ (l) 
u − X̄ 

(l) 
u 

∥∥2 

F 
, (3.7) 

hich is equivalent to 

in 

Ȳ (l) 
u 

∥∥Ȳ (l) 
u 

∥∥p 

r 
+ 

β

2 

∥∥∥Ȳ (l) 
u − X̄ 

(l) 
u + 

1 

β
K̄ 

(l) 
u 

∥∥∥2 

F 

. (3.8) 

Since for any given p ∈ (0 , 1) and r > 0 , ( 
(1+ r) σs ( ̄Y 

(l) 
u ) 

r+ σs ( ̄Y 
(l) 
u ) 

) 
p 

is a con-

ave function about σs ( ̄Y 
(l) 

u ) , we can deduce that 

 ̄Y ( 
l ) 

u ‖ 

p 
r ≤ ‖ ̄X 

( l ) 
u − 1 

β
K̄ 

( l ) 
u ‖ 

p 
r 

+ pr ( 1 + r ) 
p 

n ū ∑ 

s =1 

( w s ) 
p−1 

( w s + r ) 
p+1 

(
σs 

(
Ȳ ( 

l ) 
u 

)
− w s 

)
, 

here Ȳ (l) 
u ∈ R 

n u 1 ×n u 2 , n ū = min 

{
n u 1 , n u 2 

}
and w s = σs ( ̄X 

(l) 
u −

1 
β

K̄ 

(l) 
u ) . 

Instead of minimizing (3.8) , we obtain Ȳ (l) 
u by minimizing the 

rst order approximation of (3.8) , i.e., 

in 

Ȳ ( 
l ) 

u 

pr ( 1 + r ) 
p 

n ū ∑ 

s =1 

( w s ) 
p−1 

( w s + r ) 
p+1 

σs 

(
Ȳ (l) 

u 

)
+ 

β

2 

‖ ̄Y ( 
l ) 

u − X̄ 

( l ) 
u + 

1 

β
K̄ 

( l ) 
u ‖ 

2 
F . 

y Lemma 2.2 , we can update Ȳ (l) 
u by 

¯
 

(l) ∗
u = S pr (1+ r ) p 

β

(
X̄ 

(l) 
u − 1 

β
K̄ 

(l) 
u , 

w 

p−1 

( w + r) p+1 

)
, u ∈ ℵ ( 3 ) , l ∈ ℵ ( n u ) . 

(3.9) 

y using (3.9) and Lemma 2.3 , we can update Ȳ (l) 
u by 

¯
 

(l) ∗
u = 

{ 

S pr (1+ r ) p 
β

(
X̄ 

(l) 
u − 1 

β
K̄ 

(l) 
u , w 

p−1 

( w + r) p+1 

)
, l = 1 , . . . , 

⌈
n u +1 

2 

⌉
, 

con j 
(
Ȳ ( n u −l+2) 

u 

)
, l = 

⌈
n u +1 

2 

⌉
+ 1 , . . . , n u . 

(3.10) 

Based on the above discussions, the ADMM method can be out- 

ined as Algorithm 3.1 . 

.2. Complexity analysis 

The computational complexity of the proposed Algorithm 3.1 is 

hown as follows: X and Y u , u ∈ ℵ ( 3 ) are both of size n 1 × n 2 ×
 3 . Updating Y u needs to perform the fast Fourier transforma- 

ion (FFT), inverse FFT, and singular value decomposition with the 

ost of O 

(
n 1 n 2 n 3 

∑ 3 
u =1 ( log (n u ) + 

1 
2 min { n u 1 , n u 2 } ) 

)
. Here u 1 , u 2 ∈ 

 ( 3 ) , u 1 < u 2 and u 1 , u 2 � = u . Moreover, it takes O ( n 1 n 2 n 3 ) to up-

ate X . Thus, the overall computational complexity of LPRN is 

 

(
n 1 n 2 n 3 

∑ 3 
u =1 ( log (n u ) + 

1 
2 min { n u 1 , n u 2 } ) 

)
. 
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Algorithm 3.1 Solve the non-convex LRTC model (LPRN). 

Input: The tensor data M ∈ R 

n 1 ×n 2 ×n 3 , the observed set �, 

p ∈ (0 , 1) , r > 0 . 

Initialize: X 

0 , Y 

0 
u , K 

0 
u , u ∈ ℵ ( 3 ) . 

While not converge do 

1 . Compute X 

t+1 by (3.6). 

2 . Compute each frontal slice of Ȳ 

t+1 
u by (3.10). 

3 . Compute Y 

t+1 
u = ifft ( ̄Y 

t+1 
u , [ ] , u ) . 

4 . Update K 

t+1 
u by K 

t+1 
u = K 

t 
u − βt 

(
X 

t+1 − Y 

t+1 
u 

)
5 . Update βt+1 by βt+1 = κβt . 

6 . Check the convergence condition 

∥∥X 

t+1 − X 

t 
∥∥

∞ 

< ε, ∥∥X 

t+1 − Y 

t+1 
u 

∥∥
∞ 

< ε. 

7 . t ← t + 1 . 

end while 

Output: X 

t+1 . 

3

B

K⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w

t∥∥
(

m

a

m

s

w

c

h

m

a

x
 

H  

R

A

c

i

S

A

fi

s

a

4

m

4

a

n

p

i

m

I

w

d

O  

e

X

s

i

w

r

t

c

a

t

n

i

−
b

S

t

s

L  

R  

R

H

W

F

.3. Convergence analysis 

We are now turning to show the convergence of Algorithm 3.1 . 

y using the sub-differential [41] , we first present the following 

KT conditions for (3.3) : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P �c 

(
μ∂ ‖ 

X ‖ 1 −
3 ∑ 

i =1 

K u 

)
= 0 , 

P �

(
μ∂ ‖ 

X ‖ 1 −
3 ∑ 

i =1 

K u 

)
+ Q = 0 , 

∂ 

(
n u ∑ 

l=1 

1 
n u 

∥∥Ȳ (l) 
u 

∥∥p 

r 

)
+ K u = 0 , u ∈ ℵ ( 3 ) , 

X = Y u , u ∈ ℵ ( 3 ) , 

P �(X − M ) = 0 , 

here Q and K u are Lagrange multipliers. It thus can be used 

o determine the stop conditions for Algorithm 3.1 , which are 

X 

t+1 − X 

t 
∥∥

∞ 

< ε, 
∥∥X 

t+1 − Y 

t+1 
u 

∥∥
∞ 

< ε. 

For convenience, we denote g u,l (X ) = 

1 
n u 

∥∥∥X̄ (l) 
u 

∥∥∥p 

r 
, then (3.2) and 

3.3) can be rewritten as 

in 

X 

3 ∑ 

u =1 

n u ∑ 

l=1 

g u,l (X ) + μ‖ 

X ‖ 1 , s.t. P �( X − M ) = 0 

nd 

in 

X , Y u 

3 ∑ 

u =1 

n u ∑ 

l=1 

g u,l (Y u ) + μ‖ 

X ‖ 1 , 

.t. P �(X − M ) = 0 , Ȳ (l) 
u = X̄ 

(l) 
u , u ∈ ℵ ( 3 ) , l ∈ ℵ ( n u ) , (3.11) 

hich can be viewed as the 3rd-order tensor case for the non- 

onvex consensus problem discussed in Hong et al. [42] with 

 ( x ) = μ‖ x ‖ 1 : 

in 

x ∈ R n 
f ( x ) := 

K ∑ 

i =1 

g i ( x ) + h ( x ) , s.t. x ∈ X 

nd 

min 

 , x i ∈ R n 

K ∑ 

i =1 

g i ( x i ) + h ( x ) , s.t. x i = x , ∀ i ∈ ℵ ( K ) , x ∈ X. (3.12)

ere g i : R 

n → R is non-convex and smooth for i ∈ ℵ ( K ) , h :

 

n → R is convex but non-smooth. It is worth mentioning that 

lgorithm 3.1 proposed here can be viewed as a generation of 

lassical proximal ADMM proposed by Hong et al. [42] for solv- 

ng (3.12) from vector case to tensor case. Similar to the proof in 
5 
ection 2.3 of [42] for the convergence results of classical proximal 

DMM, the convergence results of Algorithm 3.1 is: If βt is suf- 

cient large, the accumulation point 
(
X 

∗, Y 

∗
1 
, Y 

∗
2 
, Y 

∗
3 
, K 

∗
1 
, K 

∗
2 
, K 

∗
3 

)
of 

equence 
{
X 

t , Y 

t 
1 
, Y 

t 
2 
, Y 

t 
3 
, K 

t 
1 
, K 

t 
2 
, K 

t 
3 

}
generated by Algorithm 3.1 is 

 KKT point of (3.11) . 

. Improved TRPCA model via � 
p 
r pseudo-norm and other novel 

ethods 

.1. Non-convex model of TRPCA 

Another typical tensor recovery problem is the TRPCA, which 

ims to recover the low-rank component X and sparse compo- 

ent E from observations O = X + E ∈ R 

n 1 ×n 2 ×n 3 . Adopting the � 
p 
r 

seudo-norm to characterize the low-rank part, our TRPCA model 

s formulated as 

in 

X , E 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 , s.t. O = X + E . (4.1) 

n order to better extract the foreground objects in complex scenes 

ith dynamic backgrounds, we introduce the noise analysis and 

ecompose the visual frequency sequence O into three terms, i.e., 

 = X + E + V , where V is the dynamic background. Then we can

stablish the following improved TRPCA model: 

min 

, E, V 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 + ρ‖ 

V ‖ 

2 
F , s.t. O = X + E + V . 

(4.2) 

For TRPCA, there are some own characteristics in low-rank ten- 

or X and sparse tensor E . For example, Fig. 2 shows that tensor O
s decomposed into low-rank tensor X and sparse tensor E , from 

hich we can see the pixels of adjacent two frontal slices of low- 

ank tensor X are basically the same, and the pixels of adjacent 

wo horizontal slices and lateral slices of sparse tensor E are very 

lose. Hence, we introduce three matrices F ∈ R 

n 1 ×n 1 , G ∈ R 

n 2 ×n 2 

nd H ∈ R 

n 3 ×n 3 to adapt the data set. At the same time, in order 

o more accurately separate the sparse foreground from the dy- 

amic background and prevent the moving objects from appear- 

ng in both E and V , we introduce an incoherent term � ( E, V ) := 

‖ E − V ‖ 2 F to constrain E and V so as to improve the separa- 

ility. Notice that � ( E, V ) = −‖ E − V ‖ 2 F = 2 〈 E, V 〉 − ‖ E ‖ 2 F − ‖ V ‖ 2 F . 

ince ‖ E ‖ 1 and ‖ V ‖ 2 F appear in the objective function of (4.2) , and 

he equivalence of ‖ ·‖ 1 and ‖ ·‖ F , it suffices to adopt 〈 E, V 〉 to mea- 

ure � ( E, V ) . 
Then the following improved TRPCA model reads: 

min 

X , E, V 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 + ρ‖ 

V ‖ 

2 
F + δ〈 E, V 〉 

+ 

η1 

2 

‖ 

E ×1 F ‖ 

2 
F + 

η2 

2 

‖ 

E ×2 G ‖ 

2 
F + 

η3 

2 

‖ 

X ×3 H ‖ 

2 
F 

s.t. O = X + E + V . 

(4.3) 

For simplicity, the following lemma is introduced. 

emma 4.1 ( [36] ) . Suppose that C ∈ R 

n 1 ×n 2 ×n 3 , F ∈ R 

n 1 ×n 1 , G ∈
 

n 2 ×n 2 and H ∈ R 

n 3 ×n 3 . Let F ∈ R 

n 1 ×n 2 ×n 1 , G ∈ R 

n 2 ×n 2 ×n 3 , H ∈
 

n 1 ×n 3 ×n 3 with their slices 

F (1) 
2 

= F , F (2) 
2 

= . . . = F ( n 2 ) 
2 

= 0 , 

G 

(1) 
3 

= G 

T , G 

(2) 
3 

= . . . = G 

( n 3 ) 
3 

= 0 , 

 

(1) 
1 

= H 

T , H 

(2) 
1 

= . . . = H 

( n 1 ) 
1 

= 0 . 

e now see 

 ∗2 C = C ×1 F , C ∗3 G = C ×2 G , C ∗1 H = C ×3 H . 
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Fig. 2. Description of the temporal and spatial characteristics of tensors. 

F

E

T

Y

W

F  

L

g

L

H  

t

 

h

c

X

E

w

D

V

Z

Z

Z

By using Lemma 4.1 , (4.3) can be rewritten as 

min 

X , E, V 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 + ρ‖ 

V ‖ 

2 
F + δ〈 E, V 〉 

+ 

η1 

2 

‖ 

F ∗2 E ‖ 

2 
F + 

η2 

2 

‖ 

E ∗3 G ‖ 

2 
F + 

η3 

2 

‖ 

X ∗1 H ‖ 

2 
F 

s.t. O = X + E + V . 

(4.4) 

rom Lemma 2.1 , we can rephrase (4.4) as 

min 

X , E, V 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥X̄ 

(l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 + ρ‖ 

V ‖ 

2 
F + δ〈 E, V 〉 

+ 

η1 

2 n 2 

n 2 ∑ 

j=1 

∥∥F̄ ( j) 
2 

Ē ( j) 
2 

∥∥2 

F 
+ 

η2 

2 n 3 

n 3 ∑ 

k =1 

∥∥Ē (k ) 
3 

Ḡ 

(k ) 
3 

∥∥2 

F 

+ 

η3 

2 n 1 

n 1 ∑ 

i =1 

∥∥X̄ 

(i ) 
1 

H̄ 

(i ) 
1 

∥∥2 

F 

s.t. O = X + E + V . 

(4.5) 

q. (4.5) is difficult to solve due to the interdependent norms. 

herefore, we introduce Y u , Z u , u ∈ ℵ ( 3 ) such that 

¯
 

(l) 
u = X̄ 

(l) 
u , u ∈ ℵ (3) , l ∈ ℵ (n u ) , Z̄ 

(i ) 
1 

= X̄ 

(i ) 
1 

, i ∈ ℵ (n 1 ) , 

Z̄ (l) 
u = Ē (l) 

u , u = 2 , 3 , l ∈ ℵ (n u ) . 

e can rephrase (4.5) as 

min 

X , Y u , Z u , E, V 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥Ȳ (l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 + ρ‖ 

V ‖ 

2 
F + δ〈 E, V 〉 

+ 

η1 

2 n 2 

n 2 ∑ 

j=1 

∥∥F̄ ( j) 
2 

Z̄ ( j) 
2 

∥∥2 

F 
+ 

η2 

2 n 3 

n 3 ∑ 

k =1 

∥∥Z̄ (k ) 
3 

Ḡ 

(k ) 
3 

∥∥2 

F 

+ 

η3 

2 n 1 

n 1 ∑ 

i =1 

∥∥Z̄ (i ) 
1 

H̄ 

(i ) 
1 

∥∥2 

F 

s.t. O = X + E + V, Ȳ (l) 
u = X̄ 

(l) 
u , u ∈ ℵ ( 3 ) , l ∈ ℵ ( n u ) , 

Z̄ (i ) 
1 

= X̄ 

(i ) 
1 

, i ∈ [ n 1 ] , Z̄ 
(l) 
u = Ē (l) 

u , u = 2 , 3 , l ∈ ℵ ( n u ) . 

(4.6) 

or any u ∈ ℵ ( 3 ) , l ∈ ℵ ( n u ) , let us denote S, K̄ 

(l) 
u , W̄ 

(l) 
u as the

agrange multipliers correspondingly. Then the augmented La- 

rangian of (4.6) is given as 

 ( X , E, V, Y 1 , Y 2 , Y 3 , Z 1 , Z 2 , Z 3 , S, K 1 , K 2 , K 3 , W 1 , W 2 , W 3 , β) 

= 

3 ∑ 

u =1 

n u ∑ 

l=1 

1 

n u 

∥∥Ȳ (l) 
u 

∥∥p 

r 
+ λ‖ 

E ‖ 1 + ρ‖ 

V ‖ 

2 
F + δ〈 E, V 〉 

+ 

η1 

2 n 2 

n 2 ∑ 

j=1 

∥∥F̄ ( j) 
2 

Z̄ ( j) 
2 

∥∥2 

F 
+ 

η2 

2 n 3 

n 3 ∑ 

k =1 

∥∥Z̄ (k ) 
3 

Ḡ 

(k ) 
3 

∥∥2 

F 

+ 

η3 

2 n 1 

n 1 ∑ 

i =1 

∥∥Z̄ (i ) 
1 

H̄ 

(i ) 
1 

∥∥2 

F 
+ 

β

2 

∥∥∥X + E + V − O + 

S 
β

∥∥∥2 

F 
6 
+ 

3 ∑ 

u =1 

n u ∑ 

l=1 

β

2 n u 

∥∥∥∥Ȳ (l) 
u − X̄ 

(l) 
u + 

K̄ 

(l) 
u 

β

∥∥∥∥
2 

F 

+ 

n 1 ∑ 

i =1 

β

2 n 1 

∥∥∥∥Z̄ (i ) 
1 

− X̄ 

(i ) 
1 

+ 

W̄ 

(i ) 
1 

β

∥∥∥∥
2 

F 

+ 

3 ∑ 

u =2 

n u ∑ 

l=1 

β

2 n u 

∥∥∥∥Z̄ (l) 
u − Ē (l) 

u + 

W̄ 

(l) 
u 

β

∥∥∥∥
2 

F 

. (4.7) 

ere β > 0 is the penalty parameter, and S, K u , W u , u ∈ ℵ (3) as

he Lagrange multipliers respectively. 

Clearly, Y u , u ∈ ℵ ( 3 ) can be updated by (3.10) . Now, we consider

ow to update X , E, S, Z u and W u for u ∈ ℵ ( 3 ) . Similar to (3.5) , X 

an be updated by 

 

∗ = arg min 

X 

5 β

2 

‖X − 1 

5 

3 ∑ 

u =1 

(
Y u + 

K u 

β

)

− 1 

5 

(
O − E − V − S 

β
+ Z 1 + 

W 1 

β

)
‖ 

2 
F 

= 

1 

5 

3 ∑ 

u =1 

(
Y u + 

K u 

β

)
+ 

1 

5 

(
O − E − V − S 

β
+ Z 1 + 

W 1 

β

)
. (4.8) 

The sub-problem to update E is: 

 

∗ = arg min 

E 
λ‖ 

E ‖ 1 + 

3 β

2 

‖ 

E − D ‖ 

2 
F = s λ

3 β
( D ) , (4.9) 

here 

 = 

1 

3 

(
O − X − β + δ

β
V − S 

β

)
+ 

1 

3 

3 ∑ 

u =2 

(
Z u + 

W u 

β

)
. 

The sub-problem to update V is: 

 

∗ = arg min 

V 
ρ‖ 

V ‖ 

2 
F + 

β

2 

∥∥∥X + E + V − O + 

S 
β

∥∥∥2 

F 

+ δ〈 E, V 〉 

= 

β

2 ρ + β

(
O − X − E − S + δE 

β

)
. 

(4.10) 

For any i ∈ ℵ ( n 1 ) , Z̄ 
(i ) 
1 

is updated by 

¯
 

(i ) ∗
1 

= 

(
βX̄ 

(i ) 
1 

− W̄ 

(i ) 
1 

)(
η3 ̄H 

(i ) 
1 

(
H̄ 

(i ) 
1 

)T + βI 

)−1 

. (4.11) 

For any j ∈ ℵ ( n 2 ) , Z̄ 
( j) 
2 

is updated by 

¯
 

( j) ∗
2 

= 

(
η1 

(
F̄ ( j) 

2 

)T 
F̄ ( j) 

2 
+ βI 

)−1 (
β Ē ( j) 

2 
− W̄ 

( j) 
2 

)
. (4.12) 

For any k ∈ ℵ ( n 3 ) , Z̄ 
(k ) 
3 

is updated by 

¯
 

(k ) ∗
3 

= 

(
β Ē (k ) 

3 
− W̄ 

(k ) 
3 

)(
η2 ̄G 

(k ) 
3 

(
Ḡ 

(k ) 
3 

)T + βI 

)−1 

. (4.13) 
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1 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ 
2 http://trace.eas.asu.edu/yuv/ 
According to (4.11), (4.12), (4.13) and Lemma 2.3 , we can update 
¯
 

(l) 
u by 

¯
 

(l) ∗
u = 

{ 

Z̄ (l) 
u , l = 1 , . . . , 

⌈
n u +1 

2 

⌉
, 

con j 
(
Z̄ ( n u −l+2) 

u 

)
, l = 

⌈
n u +1 

2 

⌉
+ 1 , . . . , n u . 

(4.14) 

Then the algorithm can be outlined as Algorithm 4.1 : 

.2. Complexity analysis 

The main computational cost of Algorithm 4.1 in 

ach iteration rests is to compute E, Y u , Z u for u ∈ 

 ( 3 ) . Updating Y u needs to perform the FFT, inverse 

FT, and singular value decomposition with the cost of 

 

(
n 1 n 2 n 3 

∑ 3 
u =1 ( log (n u ) + 

1 
2 min { n u 1 , n u 2 } ) 

)
. Here u 1 , u 2 ∈ ℵ ( 3 ) , 

 1 < u 2 and u 1 , u 2 � = u . Moreover, it takes O ( n 1 n 2 n 3 ) to update 

and updating Z u costs O 

(
n 1 n 2 n 3 

∑ 3 
u =1 n u + 

∑ 3 
u =1 n 

3 
u n u +1 

)
with 

 4 := n 1 . Thus, the overall computational complexity of LPRN is 

 

(
n 1 n 2 n 3 

∑ 3 
u =1 n u + 

∑ 3 
u =1 n 

3 
u n u +1 

)
. 

The convergence analysis of Algorithms 3.1 and 4.1 are quite 

imilar, for simplicity, we only conduct the convergence analysis 

lgorithm 4.1 Solve the non-convex TRPCA model (LPRN). 

nput: The tensor data O ∈ R 

n 1 ×n 2 ×n 3 , p ∈ (0 , 1) , r > 0 . 

nitialize: S 0 , X 

0 
u , Y 

0 
u , Z 

0 
u , K 

0 
u , W 

0 
u , u ∈ ℵ ( 3 ) . 

hile not converge do 

 . Compute E t+1 by (4.9). 

 . Compute V t+1 by (4.10). 

 . Compute X 

t+1 by (4.8). 

 . Compute each frontal slice of Ȳ 

t+1 
u by (3.10). 

 . Compute Y 

t+1 
u = ifft ( ̄Y 

t+1 
u , [ ] , u ) . 

 . Compute each frontal slice of Z̄ 

t+1 
u by (4.14). 

 . Compute Z 

t+1 
u = ifft ( Z̄ 

t+1 
u , [ ] , u ) . 

 . Update S t+1 by S t+1 = S t − βt 
(
O − X 

t − E t+1 − V t+1 
)
. 

 . Update K 

t+1 
u by K 

t+1 
u = K 

t 
u − βt 

(
X 

t+1 − Y 

t+1 
u 

)
0 . Update W 

t+1 
u by W 

t+1 
u = W 

t 
u − βt 

(
X 

t+1 − Z 

t+1 
u 

)
1 . Update βt+1 by βt+1 = κβt . 

2 . Check the convergence condition 

∥∥X 

t+1 − X 

t 
∥∥

∞ 

< ε, 

X 

t+1 − Y 

t+1 
u ‖ ∞ 

< ε, 

X 

t+1 − Z 

t+1 
1 

‖ ∞ 

< ε. 

3 . t ← t + 1 . 

nd while 

utput: X 

t+1 , E t+1 , V t+1 . 

f Algorithm 3.1 . Experimental discussion of the convergence be- 

avior of Algorithms 3.1 and 4.1 will be in Sections 5 and 6 , re-

pectively. 

. Experimental results for LRTC 

In this section, we report some numerical examples to demon- 

trate the validity of our LPRN-based tensor completion method. 

e employ the peak signal-to-noise ratio (PSNR), the structural 

imilarity index (SSIM) [43] and the feature similarity index (FSIM) 

44] to evaluate the performance of each algorithm. We conduct 

xtensive experiments to evaluate our method, and then, compare 

t with some existing methods, including TNN [23] , WSTNN [29] , 

STNN [24] , ADMM-ilR [19] , IR-t-TNN [26] and t- S w,p [28] . Higher

SNR, SSIM and FSIM usually indicate better performance. All ex- 

eriments are implemented in Matlab R2020b under Windows 11 

n a desktop of a 2.50 GHz CPU and 16 GB memory. 

Experimental Data Settings: Two data sets are used for LRTC. 

he details of these data sets are described as follows: 
7

erkeley Segmentation database It is composed of 12,0 0 0 images 

egmented manually. The images collected from other dataset con- 

ains 30 human subjects. The dataset is a combination of RGB im- 

ges and grayscale images. 

UV Video Sequences It is a widely used video data set, includ- 

ng 26 videos, and each sequence contains at least 150 frames. The 

ideos in the data set include People such as “Akiyo” and Land- 

capes such as “Flower”, and so on. 

Experimental Parameter Settings: The parameters in the com- 

arison algorithms are adopted from the setting suggested by the 

riginal papers. In our method, the parameters p and r are set to 

.6 and 100 in LPRN. The maximum iteration maxIter and the con- 

ergence tolerance ε are chosen as ( maxIter , ε) = (200 , 10 −3 ) . 

.1. Image inpainting 

In this part, to evaluate our methods, we conduct tensor com- 

letion on Berkeley Segmentation database 1 for image inpainting. 

e randomly select three images, which are of size 321 × 481 × 3 , 

rom this database for testing. The entries are missing at random 

y sampling ratio SR = 0 . 3 , 0 . 5 , 0 . 7 . 

The image inpainting results of the three tested images are 

iven in Table 1 and Fig. 3 . Table 1 lists the values of the PSNR,

SIM, FSIM, and running time by different methods, and we high- 

ight the best performance in bold. As observed, the proposed 

ethod can significantly outperform the compared methods in 

erms of all evaluation indices. To illustrate the visual quality, in 

ig. 3 , we show three tested images recovered by different meth- 

ds with SR = 0 . 5 . The proposed method is evidently superior to

he compared ones in the recovery of both abundant shape struc- 

ure and texture information. ADMM-ilR expands the tensor data 

3D-array) directly into matrices and applies matrix nuclear norm 

o preserve the low-rank structure of the tensor, which may de- 

troy multi-data structures and cause performance degradation 

20,23] . Based on recent results of tensor factorization, LPRN, TNN, 

STNN, PSTNN, IR-t-TNN, and t- S w,p avoid the loss of tensor struc- 

ure information [20,23] to obtain better recovery results. However, 

 key issue for the study of tensor factorization is that TNN, PSTNN, 

R-t-TNN, and t- S w,p only consider the rank related to mode-3, but 

gnore the ranks related to mode-1 and mode-2. WSTNN usually 

eads to a biased solution since it tends to over-shrink the rank 

omponents and treats each rank component equally. Based on the 

eported results, LPRN outperforms other methods in all images. 

.2. Video inpainting 

We conduct our tensor completion method on the widely used 

UV Video Sequences. 2 In the experiments, we test our method 

nd other approaches on two videos, in which frame sizes are 

88 × 352 pixels. Due to the computational limitation, we only use 

he first 30 frames of the two sequences. The sampling rates SR 

re set to 0.2, 0.3, and 0.4. As shown in Fig. 4 , we display the 8th

lice of the two testing videos with SR = 0 . 2 , respectively. Based

n the recovery results, our method fills the missing values of the 

wo testing sequences more effectively. It can deal with the details 

f the frames better. Table 2 shows the quantitative assessments 

f the results recovered by different methods. On the PSNR, SSIM 

nd FSIM metrics, our method also achieves the best, consistent 

ith the observation in Fig. 4 . Taking into account the running 

ime, our method is the fastest method. Video inpainting results 

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://trace.eas.asu.edu/yuv/
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Table 1 

Color image inpainting performance comparison: PSNR, SSIM, FSIM and running time. 

Image Methods 

SR = 0 . 3 SR = 0 . 5 SR = 0 . 7 

PSNR SSIM FSIM Time PSNR SSIM FSIM Time PSNR SSIM FSIM Time 

Airplane LPRN 29.633 0.791 0.893 5.039 35.419 0.931 0.966 4.950 42.623 0.986 0.992 5.480 

TNN 27.140 0.697 0.840 30.130 32.477 0.884 0.937 28.911 39.774 0.975 0.985 84.337 

WSTNN 28.854 0.841 0.893 8.706 34.045 0.941 0.959 8.883 40.583 0.985 0.988 26.940 

PSTNN 27.312 0.707 0.843 5.196 32.544 0.887 0.937 5.209 39.990 0.978 0.986 16.764 

ADMM-ilR 26.888 0.650 0.823 20.282 31.665 0.868 0.929 20.533 36.354 0.950 0.973 47.934 

IR-t-TNN 27.843 0.711 0.852 18.183 33.508 0.896 0.947 17.133 41.691 0.982 0.990 35.830 

t- S w,p 27.711 0.683 0.846 7.052 33.266 0.871 0.943 7.442 41.469 0.978 0.990 23.736 

House LPRN 26.145 0.765 0.900 5.064 32.084 0.923 0.968 5.138 39.464 0.986 0.994 5.701 

TNN 23.781 0.679 0.856 57.133 29.701 0.888 0.948 55.241 37.580 0.979 0.990 46.312 

WSTNN 24.543 0.811 0.886 9.062 30.223 0.940 0.958 24.255 36.575 0.984 0.988 12.097 

PSTNN 24.095 0.689 0.861 5.156 29.859 0.890 0.949 5.160 37.731 0.981 0.990 5.876 

ADMM-ilR 23.551 0.626 0.840 7.572 28.679 0.830 0.930 26.768 33.148 0.944 0.973 42.049 

IR-t-TNN 24.773 0.704 0.872 37.685 30.885 0.900 0.958 58.714 39.012 0.984 0.993 52.794 

t- S w,p 24.676 0.685 0.870 7.030 30.697 0.883 0.956 20.091 38.805 0.980 0.993 22.614 

Tiger LPRN 28.501 0.838 0.914 5.006 33.979 0.948 0.970 4.972 41.437 0.989 0.993 5.459 

TNN 25.806 0.761 0.870 82.017 31.022 0.915 0.948 87.862 38.500 0.981 0.987 82.525 

WSTNN 26.590 0.857 0.894 26.321 31.210 0.946 0.954 28.746 37.661 0.986 0.986 28.629 

PSTNN 26.192 0.768 0.875 5.348 31.232 0.917 0.950 5.408 38.709 0.983 0.988 16.591 

ADMM-ilR 26.077 0.731 0.866 67.490 30.681 0.900 0.943 68.033 35.626 0.965 0.979 56.890 

IR-t-TNN 26.733 0.775 0.883 68.925 32.283 0.925 0.958 44.734 40.507 0.987 0.992 33.525 

t- S w,p 26.621 0.761 0.881 24.176 32.202 0.911 0.956 22.288 40.463 0.983 0.991 7.581 

Fig. 3. Examples of color image inpainting with SR = 0 . 5 . From top to bottom are respectively corresponding “Airplane”, “House” and “Tiger”. Under each image, we show 

enlargements of a demarcated patch and the corresponding error map (difference from the Original). Error maps with less color information indicate better restoration 

performance. 

Fig. 4. Examples of video inpainting with SR = 0 . 2 . From top to bottom are respectively corresponding “Bus” and “Tempete” (8th slice). Under each image, we show enlarge- 

ments of a demarcated patch and the corresponding error map (difference from the Original). Error maps with less color information indicate better restoration performance. 

8
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Table 2 

Video inpainting performance comparison: PSNR, SSIM, FSIM and running time. 

Video Methods 

SR = 0 . 2 SR = 0 . 3 SR = 0 . 4 

PSNR SSIM FSIM Time PSNR SSIM FSIM Time PSNR SSIM FSIM Time 

Bus LPRN 24.336 0.727 0.871 19.786 26.398 0.815 0.892 26.213 28.370 0.868 0.924 20.814 

TNN 21.777 0.556 0.781 145.174 23.638 0.669 0.835 243.963 25.438 0.758 0.877 148.861 

WSTNN 21.793 0.634 0.771 43.411 23.585 0.739 0.833 45.095 25.248 0.813 0.875 45.817 

PSTNN 21.968 0.567 0.787 42.144 23.732 0.674 0.838 126.120 25.496 0.760 0.879 75.889 

ADMM-ilR 21.734 0.618 0.786 43.683 24.280 0.766 0.850 39.532 26.714 0.858 0.896 37.421 

IR-t-TNN 22.078 0.551 0.791 309.711 24.070 0.669 0.843 239.745 25.929 0.758 0.883 502.139 

t- S w,p 21.553 0.514 0.779 50.769 23.436 0.625 0.829 52.158 25.279 0.716 0.869 162.758 

Tempete LPRN 26.936 0.849 0.916 22.087 29.111 0.904 0.945 14.487 31.164 0.933 0.962 32.219 

TNN 24.089 0.699 0.847 320.624 26.130 0.795 0.893 161.861 28.089 0.861 0.925 156.861 

WSTNN 25.374 0.818 0.890 87.329 27.238 0.880 0.926 50.338 28.964 0.917 0.948 51.540 

PSTNN 24.266 0.709 0.851 127.960 26.226 0.799 0.894 48.928 28.144 0.862 0.926 49.179 

ADMM-ilR 24.180 0.707 0.844 95.220 26.040 0.805 0.891 37.276 27.744 0.869 0.923 32.597 

IR-t-TNN 24.563 0.709 0.854 731.770 26.689 0.803 0.898 230.595 28.689 0.866 0.928 195.270 

t- S w,p 24.090 0.682 0.844 162.785 26.203 0.775 0.886 58.306 28.213 0.841 0.918 58.103 

Fig. 5. All frontal slices obtained by different methods on the video “Bus” and “Tempete” with SR = 0 . 2 . 
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A

re also consistent with the image inpainting results, demonstrat- 

ng that our method performs tensor completion better and more 

fficiently. 

In addition, Fig. 5 displays the PSNR, SSIM, and FSIM values of 

ach frontal slice of video image “Bus” and “Tempete”. As can be 

een, in almost all the frontal slices, the PSNR, SSIM and FSIM met- 

ics of the proposed LPRN are much higher than those of the other 

ompared methods, illustrating the superiority of our method. 

.3. Discussions 

In this section, we discuss the influence of different parameters 

n � 
p 
r pseudo-norm, the effects of sparse prior, and the convergence 

f the proposed LPRN in the proposed LRTC problem. All tests are 

ased on the video data-“Bus”. 

.3.1. � 
p 
r pseudo-norm setting 

We set the SR to 0.2 in the completion tests. Now, we evaluate 

he performance of the proposed method with different � 
p 
r pseudo- 

orm settings. Firstly, p is selected from 0.1 to 0.9 with an incre- 
9 
ent of 0.1. Meanwhile, r is chosen from { 1 , 10 , 100 , 10 0 0 , 10 , 0 0 0 } . 
he quantitative metrics of the results obtained by the proposed 

ethod with different � 
p 
r pseudo-norm settings are reported in 

able 3 . From Table 3 , we can find that r = 100 , p = 0 . 6 is the best

hoice. 

.3.2. Effectiveness of sparse prior 

We further illustrate the effectiveness of sparse prior in the pro- 

osed framework. We set the SR to 0.2 in the completion tests and 

he results are presented in Fig. 6 . μ � = 0 represents a sparse prior,

nd μ = 0 represents no sparse prior. In order to better see the 

ifference between the two, we only give three index transforma- 

ion trends after 15 steps of iteration. From the figure, we can see 

hat in the previous iterations, μ = 0 has more advantages, and as 

he iteration increases, μ � = 0 has more advantages. Therefore, the 

parse prior has certain advantages for video recovery. 

.3.3. Convergence behavior 

Now the aim is to illustrate the convergence of our 

lgorithm 3.1 , and we take the completion with sampling rates 
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Table 3

The PSNR, SSIM, FSIM and Time with different r and p of � p r . 

r\ � p r \ p Index 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 PSNR 9.743 9.768 9.795 9.824 9.854 9.885 9.917 9.951 9.987

SSIM 0.068 0.069 0.071 0.072 0.073 0.075 0.076 0.077 0.079

FSIM 0.635 0.636 0.636 0.637 0.638 0.638 0.639 0.640 0.640

Time 1.580 2.342 2.383 3.203 3.371 3.313 3.268 3.310 3.277

10 PSNR 9.863 10.035 10.293 10.565 11.102 11.905 12.861 22.324 24.345

SSIM 0.074 0.082 0.090 0.100 0.119 0.149 0.187 0.609 0.709

FSIM 0.638 0.641 0.644 0.648 0.655 0.668 0.685 0.823 0.866

Time 3.263 3.172 4.761 4.784 7.368 9.609 10.589 31.845 29.909

100 PSNR 10.062 10.598 11.683 13.624 24.240 24.336 24.168 23.815 23.744

SSIM 0.084 0.106 0.148 0.232 0.713 0.727 0.719 0.707 0.705

FSIM 0.642 0.651 0.669 0.704 0.869 0.871 0.868 0.859 0.857

Time 3.165 3.941 6.475 8.167 24.196 19.786 16.330 18.154 22.877

1000 PSNR 10.137 10.901 12.338 23.509 23.974 23.801 23.402 23.153 22.873

SSIM 0.087 0.119 0.178 0.684 0.708 0.706 0.694 0.684 0.661

FSIM 0.644 0.656 0.679 0.849 0.860 0.856 0.846 0.839 0.833

Time 3.149 4.702 6.542 24.098 19.339 16.898 17.282 24.519 164.259

10,000 PSNR 10.147 10.936 12.617 23.452 23.910 23.710 23.387 22.959 22.346

SSIM 0.088 0.120 0.191 0.683 0.707 0.704 0.690 0.677 0.593

FSIM 0.644 0.657 0.685 0.846 0.859 0.856 0.848 0.837 0.829

Time 3.154 4.714 7.296 23.453 19.900 16.421 19.602 24.392 166.879

Fig. 6. The PSNR, FSIM, and FSIM values with respect to the iteration for μ � = 0 and μ = 0 . 

Fig. 7. The convergence behaviors of Algorithm 3.1 , with respect to different sampling rates.
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of each it-

ration are displayed in Fig. 7 . It can be seen from the figure that

lthough the value of 
∥∥X 

t+1 − X 

t 
∥∥

∞ 

and 

∥∥X 

t+1 − Y 

t+1 
u 

∥∥
∞ 

fluc- 

uates at some iteration steps, the value of 
∥∥X 

t+1 − X 

t 
∥∥

∞ 

and 

X 

t+1 − Y 

t+1 
u 

∥∥
∞ generally decreases as the iteration increases. It 

s clear that our Algorithm 3.1 steadily converges.
10
. Experimental results for TRPCA

In this section, we report some numerical examples to show the 

alidity of our LPRN-based TRPCA method. We conduct extensive 

xperiments to evaluate our method, and then, compare it with 

ome existing methods, including TRPCA [30] , LSD [31] , DECOLOR 

32] , IBTSVT [33] , ETRPCA [45] and t- S w,p [28] .
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Fig. 8. Seven methods for the face with uneven illumination. 

Table 4 

The accuracy ratios of eyes, noses and mouth detection by Viola–Jones algorithm. 

Original LPRN TRPCA LSD DECOLOR IBTSVT ETRPCA t- S w,p 

Eye detection 0.797 1.000 0.797 0.703 0.891 0.313 0.594 0.531 

Nose detection 0.578 1.000 0.563 0.484 0.656 0.313 0.563 0.547 

Mouth detection 0.500 1.000 0.516 0.531 0.703 0.313 0.688 0.750 
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3 www.changedetection.net . 
4 To obtain a threshold, we first identify the likely locations: pixels with magni- 

tudes less than half of the maximum magnitude of E are considered background, 

and the difference between O and X at those tentatively identified background lo- 

cations is used to estimate the expected level of noise. Finally, we set the thresh- 

old to the mean of the difference values plus three standard deviations and apply 

it to E . 
Experimental Data Settings: Two data sets are used for TRPCA. 

he details of these data sets are described as follows: 

ale B face database It contains 16,128 images of 28 human sub- 

ects under 9 poses and 64 illumination conditions. Each face im- 

ge is of size 192 × 168 . 

Dnet3 dataset It is accompanied by accurate ground-truth seg- 

entation and annotation of change/motion areas for each video 

rame. The data includes the following challenges: dynamic back- 

round, camera jitter, intermittent object motion, shadows, ther- 

al signatures, challenging weather, low frame rate, acquisition at 

ight, PTZ capture, and air turbulence. 

Experimental Parameter Settings: We mainly use four param- 

ters: λ, ρ, δ, β0 . For λ, we adopt an adaptive value to differ-

nt data and set λ = 0 . 05 / 
√ 

max { n 1 , n 2 } n 3 . For the penalty pa-

ameter β0 , we select β0 = 10 −4 . In order to better separate the 

ynamic background from the foreground, we set ρ = 0 . 05 , δ = 

0 −2 , η1 = 100 , η2 = 10 0 , η3 = 50 0 to perform the relevant con-

traints. The parameters in the comparison algorithms are adopted 

rom the setting suggested by the original papers. The maximum 

teration maxIter and the convergence tolerance ε are chosen as 

 maxIter , ε) = (200 , 10 −3 ) . 

.1. Face image shadow removal 

In our experiments, we use the Yale B face database [46] . Each 

ace image is of size 192 × 168 with 64 different lighting condi- 

ions. Our proposed algorithm is applied to address the shadow 

emoval problem in face images. Fig. 8 shows one of the compar- 

son results. The LPRN method can result in almost shadow-free 

aces. In contrast, the other six methods can only recover the faces 

ith some shadow. 

In order to further illustrate the effect of shadow elimination in 

he recovered face images, we carry on face detection with the re- 

overed data from different methods. In our experiments, we em- 

loy the face detection algorithm Viola–Jones algorithm [47] to de- 

ect the eyes, the noses, and the mouth. The Viola–Jones algorithm 

s a classical algorithm that can be used to detect people’s faces, 

oses, eyes, mouths, and upper bodies. From Table 4 we can see 

hat our algorithm is able to detect eyes, nose, and mouth 100% of 

he time. And other algorithms can not reach 100% detection rate. 
11 
.2. Background modeling 

In this subsection, we implement the TRPCA algorithms on two 

ideos in CDnet 3 dataset [48] . The videos contain some challeng- 

ng scenes, e.g., a flowing fountain (“Fountain”) and waving trees 

“Fall”). 

A threshold criterion is required to get the final foreground 

ask and we adopt the same threshold strategy 4 as in Gao et al. 

49] . To achieve an accurate evaluation of the proposed method, 

he criteria of recall and precision [50] are employed: 

 = 

T P 

T P + F N 

, P = 

T P 

T P + F P 
. (6.15) 

n the recall calculation, TP indicates the foreground pixel is cor- 

ectly marked as foreground, FN indicates that the foreground pixel 

s wrongly marked as background and FP indicates that the back- 

round pixel is wrongly marked as foreground. The F score bal- 

nces the precision and recall and an overall quantitative evalua- 

ion is defined as follows 

 = 2 × R × P 

R + P 
. (6.16) 

he F-measure value is between 0 and 1 and a larger value indi- 

ates a better effect of the video foreground-background separa- 

ion. 

From Table 5 , it can be seen that the proposed algorithm LPRN 

chieves better segmentation performance among the comparison 

ethods of F, P, and R. Some of the frames of the segmentation 

esults are shown in Fig. 9 , it can be observed that LPRN is good

t separating dynamic background flowing fountain and waving 

rees from the foreground, whereas other methods cannot. This 

s mainly because we divide the original video into three terms, 

ow-rank static background, sparse foreground, and dynamic back- 

round. And we introduce temporal and spatial matrices to make 

http://www.changedetection.net
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Table 5

Comparison of R, P and F in two video sequences.

Video LPRN TRPCA LSD DECOLOR ETRPCA t- S w,p

P F P F P F P F P F P F

R R R R R R

Fountain 0.831 0.778 0.328 0.351 0.193 0.241 0.738 0.692 0.347 0.381 0.340 0.377

0.731 0.377 0.321 0.652 0.423 0.424

Fall 0.942 0.752 0.429 0.296 0.507 0.442 0.600 0.580 0.437 0.307 0.350 0.248

0.625 0.226 0.392 0.562 0.236 0.192

Fig. 9. Detected foreground results by seven different methods.

Fig. 10. The F, P and R with different η1 , η2 and η3 .
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Table 6

The F, P and R with different ρ and δ.

ρ\ δ Index 10−5 10−4 10−3 10−2 10−1

0.01 F 0.725 0.726 0.728 0.026 0.027

P 0.948 0.947 0.944 0.013 0.014

R 0.587 0.588 0.593 1.000 0.198

0.05 F 0.771 0.771 0.771 0.778 0.026

P 0.860 0.859 0.857 0.831 0.013

R 0.698 0.699 0.700 0.731 1.000

0.1 F 0.766 0.766 0.766 0.768 0.036

P 0.825 0.825 0.823 0.810 0.018

R 0.716 0.716 0.717 0.731 0.891

0.5 F 0.760 0.760 0.760 0.760 0.077

P 0.800 0.800 0.800 0.797 0.041

R 0.724 0.724 0.724 0.727 0.744

1 F 0.760 0.760 0.760 0.760 0.061

P 0.799 0.799 0.799 0.798 0.032

R 0.725 0.725 0.725 0.726 0.820

t  

n

6

e  

p

f

i

i

a

w

a

etter use of their own characteristics in low-rank static back- 

rounds and sparse foregrounds. At the same time, we introduce 

n incoherent term to constrain sparse foreground and dynamic 

ackground so as to improve the feasibility. 

.3. Discussions 

In this section, we discuss the influence of different parameters 

n the dynamic background, spatio-temporal features and thresh- 

ld strategy, and the convergence of the proposed LPRN in the 

roposed TRPCA problem. All tests are based on the video data- 

Fountain”. 

.3.1. Dynamic background setting 

We evaluate the performance of the proposed method with dif- 

erent ρ and δ. We set ρ from 0.01 to 1 and δ from 10 −5 to 10 −1 .

he quantitative metrics of the results obtained by the proposed 

ethod with different ρ and δ settings are given in Table 6 . The 

est and the second-best performing methods in each image are 

ighlighted in red and bold, respectively. From Table 6 , we can 

nd that the results are relatively stable when δ ∈ 

[
10 −5 , 10 −2 

]
. 

lthough certain fluctuations would happen in terms of efficacy, 

= 0 . 05 , δ = 10 −2 is suggested as the first choice since it performs

ell in all our experiments. 

.3.2. Spatio-temporal features setting 

We evaluate the performance of the proposed method with dif- 

erent spatio-temporal feature parameter settings. η1 , η2 and η3 

re set within [ 0 . 1 , 100 ] and [ 1 , 500 ] , respectively. Fig. 10 illustrates 

he sensitivity for spatio-temporal features parameter η1 , η2 , η3 . It 

an be observed that the algorithms can work well across a wide 

ange of values of η , η , η . In particular, when η , η , η ≥ 10 ,
1 2 3 1 2 3 

12
he values of F increase as η1 , η2 , η3 grow, but the value of F is

ot strongly affected by choosing the different value of η1 , η2 , η3 . 

.3.3. Threshold sensitivity analysis 

In order to analyze the influence of threshold strategy on the 

xperimental results in Gao et al. [49] , we give the trend of the ex-

erimental results corresponding to the seven methods under dif- 

erent standard deviations. It can be seen from Fig. 11 that with the 

ncrease of standard deviations, except for IBTSVD, the correspond- 

ng P of each algorithm gradually increases, R gradually decreases, 

nd F first increases and then decreases, reaching the maximum 

hen standard deviations are 3. Regardless of the standard devi- 

tions, our algorithm corresponds to the highest F, P, R. With the 
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Fig. 11. The F, P, and R with different standard deviations by seven different methods. 

Fig. 12. The convergence behaviors of Algorithm 4.1 , with respect to video “Fountain” and “Fall”. 
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hange of standard deviations, the changes of F, P, and R corre- 

ponding to our algorithm are the least. 

.3.4. Convergence behavior 

To evaluate the numerical convergence of Algorithm 4.1 in 

ig. 12 , let us take the video “Fountain” and “Fall” as examples. 

hen Fig. 12 shows a strong convergence behavior of the proposed 

PRN solver, which can reach a low relative error of 10 −2 after 30 

terations. Furthermore, the error decreases as the number of iter- 

tions increases, demonstrating the numerical stability and conver- 

ence of the proposed LPRN solver. 

. Conclusion 

For the LRTC problem, we extended the WSTNN to a new ten- 

or � 
p 
r pseudo-norm, which better approximates the rank of a 

rd-order tensor. Based on the � 
p 
r pseudo-norm, we introduced 

ew non-convex tensor recovery models and proposed an alter- 

ating minimization method to solve the corresponding optimiza- 

ion problem. In addition, we introduce the noise analysis and de- 

ompose the visual frequency sequence into three terms, low-rank 

tatic background, sparse foreground, and dynamic background in 

RPCA. We introduce temporal and spatial matrices to make better 

se of their own characteristics in low-rank static backgrounds and 

parse foregrounds. At the same time, we introduce an incoherent 

erm to constrain sparse foreground and dynamic background so 
13
s to improve the separability. Experimental results showed that 

he performance of our proposed methods was significantly better 

han existing methods in the literature. 
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