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Matrix completion

Research background

Low rank matrix completion:

min
X∈Rm×n

rank(X), s.t. PΩ(X −M) = 0. (1)

Problem (1) is NP-hard to solve.

Relaxation method: nuclear norm, Schatten p-norm,
truncated nuclear norm, etc.—–the SVD of the matrix needs
to be calculated, which is computationally very expensive.

Matrix factorization: X = PQT—–the rank r of the matrix is
pre-estimated.
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Tensor completion

Research background

Low rank tensor completion problem:

min
X∈Rn1×···×nm

rank(X ), s.t. PΩ(X −M) = 0. (2)

There are various definitions of tensor rank: CP rank, Tucker rank,
Tubal rank, etc.
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CP rank

rankcp(X ) = min

{
r | X =

r∑
i=1

a
(i)
1 ⊗ a

(i)
2 ⊗ · · · ⊗ a(i)m

}
(3)

—–Computing the CP rank is NP-hard.

Tucker rank

ranktc(X ) =
(
rank

(
X(1)

)
, · · · , rank

(
X(m)

))
(4)

—–Unfolding a tensor would destroy the original multi-way
structure of the data.

Tubal rank

rankt(X ) = max
{
rank

(
X̄(1)

)
, · · · , rank

(
X̄(n3)

)}
(5)

where X̄(i) = X̄ (:, :, i), X̄ = fft(X , [], 3).
—–Fourier transform is performed only for a third order
tensors.
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Model:

min
X∈Rn1×h

rank(X), s.t. PΩ̃(X −M) = 0. (6)

 

Figure 1: Reshaping the matrix X into the tensor X
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Theorem 1

Suppose that matrix X ∈ Rn1×h and tensor X ∈ Rn1×n2×n3

obtained by reshaping matrix X with Figure 1. Then

rankt(X ) ≤ rank(X) ≤ n3 rankt(X ),

rank (X) ≤ ∥rankm(X )∥1 ≤ n3 rank (X) .
(7)
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Based on Theorem 1, we consider the following tensor completion
problem for solving the matrix completion problem.

min
X∈Rn1×n2×n3

rankt(X ), s.t. PΩ(X −M) = 0. (8)

We consider the following tensor factorization model1 to solve (8).

min
X ,P,Q

1

2
∥P ∗ Q − X∥2F , s.t. PΩ(X −M) = 0. (9)

1Pan Zhou et al. “Tensor Factorization for Low-Rank Tensor Completion”. In: IEEE Transactions on Image
Processing 27.3 (Mar. 2018), pp. 1152–1163.
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X = argmin
PΩ(X−M)=0

1

2
∥P ∗ Q − X∥2F = PΩc(P ∗ Q) + PΩ(M).

(10)

P̂ (k) =


X̄(k)

(
Q̂(k)

)∗(
Q̂(k)

(
Q̂(k)

)∗)†
, k = 1, . . . ,

⌈
n3 + 1

2

⌉
,

conj
(
P̂ (n3−k+2)

)
, k =

⌈
n3 + 1

2

⌉
+ 1, . . . , n3,

(11)

Q̂(k) =


((

P̂ (k)
)∗

P̂ (k)
)†(

P̂ (k)
)∗

X̄(k), k = 1, . . . ,

⌈
n3 + 1

2

⌉
,

conj
(
Q̂(n3−k+2)

)
, k =

⌈
n3 + 1

2

⌉
+ 1, . . . , n3.

(12)
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Algorithm 1: Matrix Completion Algorithm (TCTF-M)

Input: The matrix (tensor) data M ∈ Rn1×h (M∈ Rn1×n2×n3 ), the observed set
Ω̃ (Ω) and t0.

Input: X 0, P̂ 0, Q̂0 and the multi-rank r0X ∈ Rn3 .
While not converge do

1. Fix Q̂t and X t to update P̂ t+1 by (11).
2. If t ≤ t0 then

Fix P̂ t+1 and Q̂t to compute X t by (10).

3. Fix P̂ t+1 and X t to update Q̂t+1 by (12).
4. Adopt the rank decreasing scheme to adjust rtX , adjust the sizes of

P̂ t+1, Q̂t+1.
5. Fix P̂ t+1 and Q̂t+1 to compute X t+1 by (10).
6. Check the stop criterion:

∥∥X t+1 −X t
∥∥
F
/
∥∥X t

∥∥
F

< ε.
7. t← t+ 1.

end while
Output: X t+1.
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Model:

min
X∈Rn1×n2×n3

rankt(X ), s.t. PΩ(X −M) = 0. (13)

Lemma 1

For a tensor X ∈ Rn1×n2×n3 , it holds

rankt(X ) ≤ rank
(
X(i)

)
≤ n3 rankt(X ), i = 1, 2. (14)

Compared to Tucker rank, tubal rank does not involve the low rank
structure information of the mode-3 unfolding matrix from Lemma
1. Hence, we define an improved tensor rank as follows:

rankttr (X ) =
(
rankt(X ), rank(X(3))

)
. (15)
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We change (15) into double tubal rank:

rankdt (X ) =
(
rankt(X ), rankt(X̃ )

)
, (16)

where X̃ ∈ Rn3×p×q (pq = n1n2) satisfying X̃(1) = X(3).

Lemma 2 (The relationship between double tubal rank and 3-tubal
rank.)

For a tensor X ∈ Rn1×n2×n3 , we have

rankt(X̃ )/n2 ≤ rankt(X(13)) ≤ q rankt(X̃ ),

rankt(X̃ )/n1 ≤ rankt(X(23)) ≤ q rankt(X̃ ).

In particular, when X̃ ∈ Rn3×n1×n2 , rankt(X̃ ) = rankt(X(13)).
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The low double tubal rank tensor completion problem can be
modeled as

min
X∈Rn1×n2×n3

rankdt(X ), s.t. PΩ(X −M) = 0. (17)

To keep things simple, we consider the follow problem:

min
X

γ1 rankt(X ) + γ2 rankt(X̃ ), s.t. PΩ (X −M) = 0. (18)

Clearly, (18) reduces to the classical low tubal rank tensor
completion model when γ1 = 1 and γ2 = 0.
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We consider the following tensor factorization model

min
γ1
2

∥P ∗ Q − X∥2F +
γ2
2

∥∥∥U ∗ V − X̃
∥∥∥2
F
, s.t. PΩ(X −M) = 0.

(19)
Motivated by the reweighted strategies2 and the supergradient
concepts3, problem (19) can be derived

min
1

2
ρ
(
∥P ∗ Q − X∥2F

)
+

1

2
ρ

(∥∥∥U ∗ V − X̃
∥∥∥2
F

)
s.t. PΩ(X −M) = 0.

(20)

2Canyi Lu et al. “Generalized Nonconvex Nonsmooth Low-Rank Minimization”. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2014. doi: 10.1109/cvpr.2014.526.

3KC Border. The Supergradient of a Concave Function. 2001. url:
https://healy.econ.ohio-state.edu/kcb/Notes/Supergrad.pdf.
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Assumption 1

The function ρ(·) : R+ → R+ is a proper, concave, lower
semicontinuous function on [0,+∞), and there exists a, b > 0 such
that ∂ρ(t) ⊂ [a, b] for any t ∈ [0,+∞).

Remark

Since ρ(·) is concave on [0,+∞), by the definition of the
supergradient, for any s and t, we have

ρ(t) ≤ ρ(s) + ws(t− s), ∀ws ∈ ∂ρ(s).
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Now, we are ready to update X , P, Q, U , V. First of all, by
Assumption 1, we can update X by

X = argmin
PΩ(X−M)=0

γ1
2

∥P ∗ Q − X∥2F +
γ2
2

∥∥∥U ∗ V − X̃
∥∥∥2
F

= argmin
PΩ(X−M)=0

γ1
2

∥P ∗ Q − X∥2F +
γ2
2

∥∥∥fold3 [(U ∗ V)(1)
]
−X

∥∥∥2
F

=
1

γ1 + γ2
PΩc

(
γ1P ∗ Q+ γ2fold3

[
(U ∗ V)(1)

])
+ PΩ(M).

(21)

After updating X , we need to compute the weighting γ1, γ2 by

γ1 ∈ ∂ρ
(
∥P ∗ Q − X∥2F

)
, γ2 ∈ ∂ρ

(∥∥∥U ∗ V − X̃
∥∥∥2
F

)
. (22)
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Furthermore, due to ρ(·) is a monotonically increasing function, P
and Q can be updated by solving the following problem

argmin
P,Q

1

2
∥P ∗ Q − X∥2F . (23)

Clearly, P and Q can be updated by (11) and (12) respectively.
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Similarly, we can update Û and V̂ as follows:

Û (k) =


¯̃X(k)

(
V̂ (k)

)∗(
V̂ (k)

(
V̂ (k)

)∗)†
, k = 1, . . . ,

⌈
q + 1

2

⌉
,

conj
(
Û (q−k+2)

)
, k =

⌈
q + 1

2

⌉
+ 1, . . . , q,

(24)

V̂ (k) =


((

Û (k)
)∗

Û (k)
)†(

Û (k)
)∗ ¯̃X(k), k = 1, . . . ,

⌈
q + 1

2

⌉
,

conj
(
V̂ (q−k+2)

)
, k =

⌈
q + 1

2

⌉
+ 1, . . . , q.

(25)
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Algorithm 2: Double Tubal Rank Tensor Completion (DTRTC)

Input: The tensor dataM∈ Rn1×n2×n3 , the observed set Ω, t0. ρ(x).

Input: X 0, P̂ 0, Q̂0, Û0, V̂ 0. The initialized rank r0X ∈ Rn3 and r0
X̃
∈ Rq .

Parameters γ0
1 , γ

0
2 . While not converge do

1. Fix Q̂t and X t to update P̂ t+1 by (11).
2. If t ≤ t0 then

Fix P̂ t+1 and Q̂t to compute X t by (21).

3. Fix P̂ t+1 and X t to update Q̂t+1 by (12).
4. If t ≤ t0 then

Fix P̂ t+1 and Q̂t+1 to compute X t by (21).

5. Fix V̂ t and X t to update Ût+1 by (24).
6. If t ≤ t0 then

Fix Ût+1 and V̂ t to compute X t by (21).

7. Fix Ût+1 and X t to update V̂ t+1 by (25).
8. Adopt the rank decreasing scheme to adjust rtX and rt

X̃
, adjust the sizes of

P̂ t+1, Q̂t+1, Ût+1 and V̂ t+1.
9. Fix P̂ t+1, Q̂t+1, Ût+1, V̂ t+1 to compute X t+1 by (21).
10. Compute γt+1

1 , γt+1
2 by (22).

11. Check the stop criterion:
∥∥X t+1 −X t

∥∥
F
/
∥∥X t

∥∥
F

< ε.
12. t← t+ 1.

end while
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Theorem 2

Assume that the sequence
{
Pt,Qt,U t,Vt,X t

}
generated by

Algorithm 2 is bounded, Then it satisfies the following properties:

(1) f t is monotonically decreasing. Actually, it satisfies the
following inequality:

f t − f t+1 ≥ γt1
2n3

∥∥∥P̂ t+1Q̂t+1 − P̂ tQ̂t
∥∥∥2
F
+

γt2
2q

∥∥∥Û t+1V̂ t+1 − Û tV̂ t
∥∥∥2
F
+

1

2

∥∥X t+1 −X t
∥∥2
F
≥ 0.

(2) Any accumulation point (P⋆,Q⋆,U⋆,V⋆,X⋆) of the sequence{
Pt,Qt,U t,Vt,X t

}
is a KKT point of problem (19).
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Grayscale Image Inpainting

Observed TCTF-M SRMF MC-NMF FPCA SPG

Figure 2: Examples of grayscale image inpainting. From top to bottom,
the results are for “Plastic” and “Bark”, respectively
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Table 1: Grayscale image inpainting performance comparison

Image Methods PSNR SSIM FSIM Time

Plastic

TCTF-M 30.762 0.872 0.995 0.796
SRMF 27.148 0.708 0.973 18.867

MC-NMF 26.512 0.673 0.964 3.070
FPCA 20.855 0.397 0.833 41.008
SPG 29.709 0.841 0.984 15.725

Bark

TCTF-M 29.590 0.890 0.996 0.765
SRMF 25.651 0.727 0.975 18.524

MC-NMF 24.413 0.663 0.960 3.497
FPCA 19.219 0.400 0.847 40.227
SPG 29.306 0.881 0.990 17.890

Wash

TCTF-M 24.207 0.816 0.996 3.157
SRMF 19.383 0.364 0.965 108.759

MC-NMF 19.013 0.312 0.946 12.736
FPCA 17.210 0.200 0.825 268.344
SPG 24.046 0.783 0.990 184.925
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Figure 3: Grayscale image inpainting results. From top to bottom, the
results are for “Plastic”, “Bark” and “Wash”, respectively
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High Altitude Aerial Image Inpainting

Methods
SR = 40% SR = 50%

PSNR SSIM FSIM Time PSNR SSIM FSIM Time

S
an

F
ra
n
ci
sc
o DTRTC 29.997 0.832 0.978 5.73 31.897 0.884 0.988 4.76

WSTNN 29.938 0.806 0.982 244.55 31.807 0.858 0.991 181.32
TCTF 27.159 0.752 0.915 9.99 28.907 0.802 0.969 10.42
TNN 28.839 0.774 0.972 167.20 30.301 0.830 0.984 149.61
NCPC 26.177 0.693 0.897 36.97 27.240 0.751 0.928 27.85
NTD 25.586 0.703 0.878 11.06 26.776 0.754 0.918 10.58

W
as
h

DTRTC 22.122 0.694 0.991 39.16 23.339 0.770 0.995 26.27
WSTNN 13.698 0.372 0.910 1473.13 16.488 0.485 0.960 1464.97
TCTF 19.560 0.540 0.883 52.78 20.581 0.623 0.929 52.74
TNN 21.727 0.644 0.980 1299.84 23.144 0.732 0.990 1303.74
NCPC 19.310 0.528 0.871 118.27 20.298 0.608 0.919 121.55
NTD 18.910 0.518 0.811 33.84 19.655 0.589 0.87 34.959
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Matrix completion

We established a relationship between matrix rank and tensor tubal
rank. Based on the relationship, we modeled the matrix
completion problem as a third order tensor completion problem and
proposed a two-stage tensor factorization based algorithm, which
made a drastic reduction on the dimension of data and hence cut
down on the running time.
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Tensor completion

We introduced double tubal rank. Compared to tubal rank, 3-tubal
rank and tensor fibered rank, double tubal rank can not only fully
exploit the low rank structures of the tensor but also avoid the low
rank structures redundancy. Based on this rank, a reweighted
tensor factorization algorithm was proposed.
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Thank you!
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