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Abstract
Low rank matrix and tensor completion problems are to recover the incomplete two 
and higher order data of low rank structures. The essential problem in the matrix 
and tensor completion problems is how to improve the efficiency. For a matrix com-
pletion problem, we establish a relationship between matrix rank and tensor tubal 
rank, and reformulate matrix completion problem as a third order tensor comple-
tion problem. For the reformulated tensor completion problem, we adopt a two-stage 
strategy based on tensor factorization algorithm. In this way, a matrix completion 
problem of big size can be solved via some matrix computations of smaller sizes. 
For a third order tensor completion problem, to fully exploit the low rank structures, 
we introduce the double tubal rank which combines the tubal rank of two tensors, 
original tensor and the reshaped tensor of the mode-3 unfolding matrix of original 
tensor. Based on this, we propose a reweighted tensor factorization algorithm for 
third order tensor completion. Extensive numerical experiments demonstrate that 
the proposed methods outperform state-of-the-art methods in terms of both accuracy 
and running time.
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1  Introduction

Matrix and tensor completion have received much attention in recent years, which 
have many applications, such as in hyperspectral data recovery [6], internet traffic 
data completion [19], image/video inpainting [8, 20, 35, 46–48], image classifica-
tion [4, 23] and high dynamic range (HDR) imaging [17, 28, 37]. In general, such 
matrix and tensor data have low rank structures. Hence the problems are modeled 
as the rank minimization problems. Unfortunately, the rank minimization prob-
lem is NP-hard in general due to the combinational nature of the function rank(⋅) 
even for matrix rank.

Nuclear norm is known to be the tightest convex relaxation of matrix rank 
function [31]. Hence the matrix completion problem is relaxed as a nuclear norm 
or related norm minimization with various efficient numerical methods [5, 7, 
18, 21, 24, 26, 36]. But these methods require computing matrix singular value 
decomposition (SVD), which become increasingly expensive with the increasing 
sizes of the underlying matrices. To cut down the computational cost, low rank 
matrix factorization methods have been proposed in [9, 13, 32, 49, 54]. However, 
matrix factorization methods also need expensive computation for large scale 
matrix data.

As a higher order generalization of matrix completion, tensor completion has 
attracted much more attention recently [1, 2, 12, 48, 51]. Compared to matrix 
rank, there are various definitions for tensor rank, including CANDECOMP/
PARAFAC (CP) rank [11], Tucker rank [38], tensor train (TT) rank [29], triple 
rank [30] and tubal rank [14]. Since it is generally NP-hard to compute the CP 
rank [10], it is hard to apply CP rank to the tensor completion problem. Although 
the TT rank can be computed by TT singular value decomposition, it always has 
a fixed pattern, which might not be the optimum for specific data tensor [53]. The 
Tucker rank is defined on the rank of unfolding matrices, which are of big sizes. 
On the other hand, unfolding a tensor as a matrix would destroy the original 
multi-way structure of the data, leading to vital information loss and degrading 
performance efficiency [25, 27, 48]. Recently, tubal rank becomes more and more 
popular since the low tubal rank tensor completion can be solved via updating 
matrices of smaller sizes at each iteration [57]. However, tubal rank is defined on 
the third mode, which ignores the low rank structures on the other two modes. To 
exploit the low rank structures, Zhang et al. [55, 56] proposed 3-tubal rank and 
tensor fibered rank, respectively, which considered the three modes at the same 
time. Though this type of rank reveals more low rank structures of the tensor, the 
low rank structures they considered overlapped (see Lemma 8), so redundant run-
ning time is generated.

Based on these analyses, in this paper, we first propose a novel model for low 
rank matrix completion problem. For a large scale matrix, we reshape it as a third 
order tensor. Then we establish a relationship between matrix rank and tubal 
rank of the reshaped tensor. Based on this relationship, we reformulate a matrix 
completion problem as a third order tensor completion problem. Then we pro-
pose a two-stage tensor factorization based algorithm to the reformulated tensor 
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completion problem. By this way, a matrix completion problem of big size can be 
dealt with by computing matrix factorization of smaller sizes, which drastically 
cuts down the consumed time.

For the tensor completion problem, we consider the tubal rank and the mode-3 
unfolding matrix rank together for fully exploiting the low rank structures of the ten-
sor. For the mode-3 unfolding matrix, we adopt the tubal rank of the reshaped tensor 
to measure. Thus, we introduce a new tensor rank, named double tubal rank. See the 
definition of tensor double tubal rank in (19) for details. Based on these, a reweighted 
tensor factorization algorithm is proposed for the tensor completion based on double 
tubal rank.

In summary, our main contributions include: 

(1)	 For a matrix completion problem, we reformulate it as a third order tensor com-
pletion problem. Then we propose a tensor factorization based algorithm to solve 
it. In this way, a big matrix completion problem can be solved by computing 
some smaller matrices, which greatly improves the efficiency of matrix comple-
tion problem.

(2)	 For a third order tensor completion problem, we introduce the tensor double tubal 
rank. Compared with tubal rank, 3-tubal rank [55] and tensor fibered rank [56], 
double tubal rank can fully exploit the low rank structures without redundancy. 
Based on the introduced double tubal rank, we propose a reweighted tensor 
factorization algorithm.

(3)	 In the proposed algorithms, we adopt the two-stage strategy, in which a good 
initial point is generated in the first stage and the convergence is accelerated in 
the second stage.

(4)	 The proposed algorithms converge to KKT points. Extensive numerical experi-
ments demonstrate the outperformance of our proposed algorithms over the other 
compared algorithms.

The outline of this paper is given as follows. We recall the basic notations on tensor in 
Sect. 2. Sections 3 and 4 deal with the low rank matrix completion problem and the low 
rank tensor completion problem, respectively. Extensive simulation results are reported 
to demonstrate the validity of our proposed algorithms in Sects. 5 and 6 concludes this 
paper.

2 � Notations and preliminaries

This section recalls some basic knowledge on tensors. We first give the basic notations 
and then present the tubal rank, 3-tubal rank (tensor fibered rank), and Tucker rank. We 
state them here in detail for the readers’ convenience.
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2.1 � Notations

For a positive integer n, [n] ∶= {1, 2,… , n} . Scalars, vectors and matrices are denoted 
as lowercase letters ( a, b, c,… ), boldface lowercase letters ( a, b, c,… ) and uppercase 
letters ( A,B,C,… ), respectively. Third order tensors are denoted as calligraphic letters 
( A,B, C,… ). For a third order tensor A ∈ ℝn1×n2×n3 , we denote its (i, j, k) -th element 
as Aijk or A(i, j, k) without confusion. Furthermore, we use the notation A(∶, ∶, k) to 
denote its k-th frontal slice, denoted by A(k) for all k ∈ [n3] . The inner product of two 
tensors A, B ∈ ℝn1×n2×n3 is the sum of products of their entries, i.e.

The Frobenius norm is ‖A‖F =
√⟨A,A⟩ . For a matrix A, AH and A† represent the 

conjugate transpose and the pseudo-inverse of A, respectively.

2.2 � T‑product, tubal rank and 3‑tubal rank (tensor fibered rank)

Discrete Fourier Transformation (DFT) plays a key role in tensor-tensor product 
(t-product). For A ∈ ℝn1×n2×n3 , let Ā ∈ ℂn1×n2×n3 be the result of DFT of A ∈ ℝn1×n2×n3 
along the 3rd dimension. Specifically, let Fn3

= [f
1
,… , fn3 ] ∈ ℂn3×n3 be a DFT matrix, 

where

with � = e
−

2��

n3  and � =
√
−1 . Then Ā(i, j, ∶) = Fn3

A(i, j, ∶) , which can be computed 
by Matlab command “ Ā = fft(A, [ ], 3) ”. Furthermore, A can be computed by Ā 
with the inverse DFT A = ifft(Ā, [ ], 3).

Lemma 1  [33] Given any real vector v ∈ ℝn3 , the associated vector v̄ = Fn3
v ∈ ℂn3 

satisfies

By Lemma 1, the frontal slices of Ā have the following properties:

For A ∈ ℝn1×n2×n3 , we define matrix Ā ∈ ℂn1n3×n2n3 as

⟨A,B⟩ =
n1�
i=1

n2�
j=1

n3�
k=1

AijkBijk.

fi =
[
1;�(i−1);… ;�k(i−1);… ;�(n3−1)(i−1)

]
∈ ℂn3

v̄1 ∈ ℝ and conj
(
v̄i
)
= v̄n3−i+2, i = 2,… ,

⌊
n3 + 1

2

⌋
.

(1)

{
Ā(1) ∈ ℝn1×n2 ,

conj
(
Ā(i)

)
= Ā(n3−i+2), i = 2,… ,

⌊
n3+1

2

⌋
.

(2)Ā = bdiag(Ā) =

⎡⎢⎢⎢⎣

Ā(1)

Ā(2)

⋱

Ā(n3)

⎤⎥⎥⎥⎦
.
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Here, bdiag(⋅) is an operator which maps the tensor Ā to the block diagonal matrix 
Ā . The block circulant matrix bcirc(A) ∈ ℝn1n3×n2n3 of A is defined as

Based on these notations, the T-product is presented as follows.

Definition 1  (T-product) [15] For A ∈ ℝn1×r×n3 and B ∈ ℝr×n2×n3 , define

Here

and its inverse operator “fold” is defined by

Tensor multi-rank and tubal rank are now introduced as follows.

Definition 2  (Tensor multi-rank and tubal rank) [14] For a tensor A ∈ ℝn1×n2×n3 , let 
rk = rank

(
Ā(k)

)
 for all k ∈ [n3] with A(k) being the k-th frontal slice of Ā . Then multi-

rank of A is defined as rankm(A) = (r1,… , rn3 ) . The tensor tubal rank is defined as 
rankt(A) = max

{
rk|k ∈ [n3]

}
.

Then, we introduce 3-tubal rank (tensor fibered rank).

Definition 3  (3-tubal rank/tensor fibered rank) [55, 56] For a tensor A ∈ ℝn1×n2×n3 , 
let A(13) ∈ ℝn1×n3×n2 and A(23) ∈ ℝn2×n3×n1 with Aijk = (A(13))ikj = (A(23))jki . Then its 
tensor fibered rank is defined as

Finally, we presented lemmas that will be utilized to simplify models and do 
theoretical analysis.

Lemma 2  [15] Suppose that A, B are two third order tensors such that F ∶= A ∗ B 
is well defined as in Definition 1. Let Ā, B̄, F̄ be the block diagonal matrices defined 
as in (2). Then 

(1)	 ‖A‖2
F
=

1

n3

��Ā��2F;
(2)	 F = A∗B and F̄ = ĀB̄ are equivalent.

bcirc(A) =

⎡
⎢⎢⎢⎣

A(1) A(n3) ⋯ A(2)

A(2) A(1) ⋯ A(3)

⋮ ⋮ ⋱ ⋮

A(n3) A(n3−1) ⋯ A(1)

⎤
⎥⎥⎥⎦
.

A ∗ B ∶= fold(bcirc(A) ⋅ unfold(B)) ∈ ℝn1×n2×n3 .

unfold(B) =
[
B(1);B(2);… ;B(n3)

]
,

fold(unfold(B)) = B.

rankf (A) =
(
rankt(A), rankt

(
A(13)

)
, rankt

(
A(23)

))
.
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Lemma 3  [57] Suppose that A ∈ ℝn1×r×n3 and B ∈ ℝr×n2×n3 , and F ∈ ℝn1×n2×n3 are 
three tensors. Then 

(1)	 if rankt(F) = r̂ , then F  can be written into a tensor product form F = G ∗ H , 
where G ∈ ℝn1×r̂×n3 and H ∈ ℝr̂×n2×n3 are two tensors of smaller sizes and they 
meet rankt(G) = rankt(H) = r̂;

(2)	 rankt(A ∗ B) ≤ min
{
rankt(A), rankt(B)

}
.

2.3 � Tucker rank

In this subsection, we are ready to present some notations on Tucker rank decompo-
sition. More details can be found in Kolda and Bader’s review on tensor decomposi-
tions [16].

The mode-s unfolding A(s) of tensor A ∈ ℝn1×n2×n3 is a matrix in ℝns×Ns with its 
(i, j)-th element being Ai1…is−1iis+1…i3

 , where j = 1 +
∑

k≠s(ik − 1)n̄k , n̄k =
∏

l<k,l≠s nl 
and Ns =

∏
k≠s nk . The unfolding matrix can be obtained by “tens2mat(A, s )” in 

Matlab. The opposite operation “ folds ” is defined as folds(A(s)) ∶= A.
Based on the definition of mode-s unfolding matrix, the Tucker rank of tensor is 

defined as follows.

Definition 4  For a tensor A ∈ ℝn1×n2×n3 , let A(i) ∈ ℝni×Ni be the mode-i unfolding 
matrix. The Tucker rank of A is

Next, we recall the definition of k-mode product.

Definition 5  For a tensor A ∈ ℝn1×…×nk×…×nm and a matrix B ∈ ℝJk×nk , the mode-
k product of A with B is a tensor of n1 ×… × nk−1 × Jk × nk+1 ×… × nm with its 
entries

Easy to find that, for suitable matrices B1 and B2 , it holds

Based on these notations, we are ready to present an equivalent definition of Tucker 
decomposition of tensor as follows.

Definition 6  Suppose that

ranktc(A) =
(
rank(A(1)), rank(A(2)), rank(A(3))

)
.

(A ×k B)i1…im
=

nk∑
jk=1

Ai1…ik−1jkik+1…im
Bikjk

.

T ×i B
1 ×i B

2 = T ×i

(
B2B1

)
.
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where G ∈ ℝr1×r2×r3 , orthogonal matrix Ui ∈ ℝni×ri and ri = rank
(
A(i)

)
 for all i ∈ [3] . 

Such G is called a core tensor and (3) is called a Tucker rank decomposition of A.

3 � A tensor‑product factorization based method for matrix 
completion

Given a partially observed matrix M ∈ ℝn1×h , low rank matrix completion problem 
can be formulated as a constrained rank minimization problem, that is,

where 𝛺̃ is an index subset of observed entries of matrix, P𝛺̃(⋅) is a projection oper-
ator that keeps the entries of matrix in 𝛺̃ and makes other entries zero. When n1 
and h are very large, the required cost to recover matrix X will be very expensive. 
To lower the cost, we reshape the matrix as a third order tensor as follows. For a 
given integer n2 , we add a zero matrix 0 ∈ ℝn1×l in X with the smallest l such that 
X ∶= [X, 0] ∈ ℝn1×(h+l) and n3 ∶= (h + l)∕n2 is an integer. Therefore, we reshape the 
matrix X ∈ ℝn1×h as a tensor X ∈ ℝn1×n2×n3 such that

See Fig. 1 for clearness.

(3)A = G ×1 U
1 ×2 U

2 ×3 U
3,

(4)min
X∈ℝn1×h

rank(X), s.t. P𝛺̃(X −M) = 0,

(5)X(k) = X
(
∶, (k − 1)n2 + 1 ∶ kn2

)
, k ∈ [n3].

Fig. 1   Reshaping the matrix X into the tensor X
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Now we are ready to establish a relationship between rank(X) and rankt(X) . For 
this aim, we need the following results.

Lemma 4  Suppose that A ∈ ℝn1×n2×n3 and Ā = fft(A, [ ], 3) , then 
rank

(
Ā(1)

)
= rank

(
A(1)

)
.

Proof  By Ā = fft(A, [ ], 3) , we have Ā = A×3Fn3
 . Let A = G ×1 U

1 ×2 U
2 ×3 U

3 be 
a Tucker rank decomposition. Then

which leads to rank
(
Ā(1)

)
≤ rank

(
U1

)
= rank

(
A(1)

)
 . Similarly, with A = Ā×3F

−1
n3

 , 
there holds

In conclusion, the lemma is established now. 	�  ◻

Lemma 5  Suppose that matrix X ∈ ℝn1×h and tensor X ∈ ℝn1×n2×n3 obtained by 
reshaping matrix X with (5). Then

Proof  Let X̄ = fft(X, [ ], 3) , then

where the first equality follows from the way of the reshaped tensor X  , 
the second equality is due to Lemma  4 and the third equality comes from 
X̄(1) =

[
X̄(1), X̄(2),… , X̄(n3)

]
 . Observe that

and

By (7), (8) and (9), it follows

On the other hand, (7) and (9) mean that

Ā = A×3Fn3
= G ×1 U

1 ×2 U
2 ×3

(
Fn3

U3
)
,

rank
(
A(1)

)
≤ rank

(
Ā(1)

)
.

(6)
rankt(X) ≤ rank(X) ≤ n3rankt(X),

rank(X) ≤ ‖‖rankm(X)‖‖1 ≤ n3rank(X).

(7)rank(X) = rank
(
X(1)

)
= rank

(
X̄(1)

)
= rank

([
X̄(1), X̄(2),… , X̄(n3)

])
,

(8)rank
([
X̄(1), X̄(2),… , X̄(n3)

])
≤

n3∑
k=1

rank
(
X̄(k)

)
≤ n3rankt(X)

(9)rank
([
X̄(1), X̄(2),… , X̄(n3)

])
≥ max

{
rank

(
X̄(k)

)|k ∈ [n3]
}
= rankt(X).

rankt(X) ≤ rank(X) ≤ n3rankt(X).

(10)n3rank(X) ≥ n3rankt(X) ≥

n3∑
k=1

rank
(
X̄(k)

)
.
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Together with (7) and (8), it holds

	�  ◻

Based on these analyses, we consider the following tensor completion problem 
for solving the matrix completion problem (4):

where 𝛺 =
{
(i, j, k) ∶ (i, j + n2(k − 1)) ∈ 𝛺̃, i ∈ [n1], j ∈ [n2], k ∈ [n3]

}
 is an index 

subset of index set {(i, j, k) ∶ i ∈ [n1], j ∈ [n2], k ∈ [n3]} ; M ∈ ℝn1×n2×n3 is a tensor 
reshaped by matrix M, by the same way of reshaped tensor X .

According to Lemma 3, a tensor can be factorized as a product of two tensors of 
smaller sizes. Applying the low rank tensor approximation model (11) introduced in 
[57], we consider the following model to solve (11)

where P ∈ ℝn1×r×n3 ,Q ∈ ℝr×n2×n3 with r being the pre-estimated tubal rank of X  . 
Clearly, problem (12) can be regarded as a low rank approximation version of (11).

In the following, we present how to solve (12). We adopt the alternating minimiza-
tion scheme to optimize (12). Update X  , for fixed tensors P and Q , by

where �c denotes the complement of the set � with respect to the set {
(i, j, k) ∶ i ∈ [n1], j ∈ [n2], k ∈ [n3]

}
.

Now we update P and Q with a similar way of Algorithm TCTF proposed in Sec-
tion 3 of [57]. For the ease of the reader, we present the details here. We rewrite (12) 
as a corresponding matrix version. Assume that rankm(X) = (r1, r2,… , rn3 ) and 
rankt(X) = r̂ , where rk = rank

(
X̄(k)

)
, k ∈ [n3] and r̂ = max{r1,… , rn3} . For each 

k, X̄(k) can be factorized as a product of two matrices P̂(k) and Q̂(k) with P̂(k) ∈ ℂn1×rk 
and Q̂(k) ∈ ℂrk×n2 are the k-th block diagonal matrices of P̂ ∈ ℂn1n3×(

∑n3
k=1

rk) and 
Q̂ ∈ ℂ(

∑n3
k=1

rk)×n2n3 . Let P̄(k) = [P̂(k), 0] ∈ ℂn1×r̂ , Q̄(k) = [Q̂(k);0] ∈ ℂr̂×n2 and P̄, Q̄ be 
the block diagonal matrices with the k-th block diagonal matrices P̄(k) and Q̄(k) , respec-
tively. Then P̂Q̂ = P̄Q̄ . Together with Lemma 2, it follows

Therefore, (12) can be rewritten as

n3rank(X) ≥

n3∑
k=1

rank
(
X̄(k)

)
= ‖‖rankm(X)‖‖1 ≥ rank(X).

(11)min
X∈ℝn1×n2×n3

rankt(X), s.t. P�(X −M) = 0,

(12)min
X,P,Q

1

2
‖P ∗ Q − X‖2

F
, s.t. P�(X −M) = 0,

(13)X = argmin
P�(X−M)=0

1

2
‖P ∗ Q − X‖2

F
= P�c (P ∗ Q) + P�(M),

‖P ∗ Q − X‖2
F
=

1

n3

��P̄Q̄ − X̄��2F =
1

n3

���P̂Q̂ − X̄
���
2

F
=

1

n3

n3�
k=1

���P̂
(k)Q̂(k) − X̄(k)���

2

F
.
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where P̂(k), Q̂(k) are defined as above. Combining with (1), we can update P and Q as 
follows:

One can perform (15), (16) and (13) to update P , Q and X  in different manners. 
Directly applying the APG method proposed in [45] leads to the order of P , Q , X  . 
However, since X  interacts with P and Q , updating it more frequently is expected to 

(14)min
X,P,Q

1

2n3

n3∑
k=1

‖‖‖P̂
(k)Q̂(k) − X̄(k)‖‖‖

2

F
, s.t. P𝛺(X −M) = 0,

(15)P̂(k) =

⎧⎪⎨⎪⎩

X̄(k)
�
Q̂(k)

�H�
Q̂(k)

�
Q̂(k)

�H�†

, k = 1,… ,
�
n3+1

2

�
,

conj
�
P̂(n3−k+2)

�
, k =

�
n3+1

2

�
+ 1,… , n3,

(16)Q̂(k) =

⎧⎪⎨⎪⎩

��
P̂(k)

�H
P̂(k)

�†�
P̂(k)

�H
X̄(k), k = 1,… ,

�
n3+1

2

�
,

conj
�
Q̂(n3−k+2)

�
, k =

�
n3+1

2

�
+ 1,… , n3.

(a) (b)

Fig. 2   Results with three different orders
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speed up the convergence of the algorithm. Hence, a more efficient way would be to 
update the variables in the order of P , X  , Q , X  . The convergence behavior with two 
different updating orders on a synthetic tensor and the USC-SIPI image database1 
was shown in Fig. 2. As you can see from the figure, the final effect of the updating 
order P , Q , X  is similar to that of  P , X  , Q , X  . However, the former convergence 
speeds are much worse than the latter. Although the updated sequence {P , X  , Q , 
X} converges faster, it takes more iteration time for each step, and the reason for the 
faster convergence is due to the fact that the first few steps can produce a good value. 
For this reason, we adopt the two-stage strategy: updating order P , X  , Q , X  in the 
first few steps, and P , Q , X  in the subsequent steps. We denote this algorithm by 
TCTF-M. Similarly, we can see the convergence behavior of TCTF-M with the best 
performance.

For convenience, we outline TCTF-M as follows.

Remark 1  In general, we do not know the true multi-tubal rank of optimal tensor X  
in advance. Thus, it is necessary to estimate the multi-rank of tensor X  . Similar to 
[40, 43, 57], we adopt the same rank estimation and rank decreasing strategy.

The strategy is described as follows. Suppose that the multi-rank of X  is 
rt =

(
rt
1
, rt

2
,⋯ , rt

n3

)
 at the t-th iteration. We compute the eigenvalues �i of 

(
P̂(k)

)H
P̂(k) 

with �1 ⩾ �2 ⩾ ⋯ ⩾ �nt , where nt =
∑n3

k=1
rt
k
 . Compute 𝜆̂j = 𝜆j∕𝜆j+1, j ∈ [nt − 1] , 

lt = argmax1⩽j⩽nt−1 𝜆̂j and 𝜏 t = (lt − 1)𝜆̂lt∕
∑

j≠lt 𝜆̂j . If � t ⩾ 10 (a large drop in the 
magnitude of the eigenvalues), we will reduce rt . We find �st such that ∑st

j=1
�j∕

∑nt
j=1

�j ⩾ 95% . Assume there are mt
k
 eigenvalues of 

(
P̂(k)

)H
P̂(k) which 

belong to 
{
�st+1,⋯ , �nt

}
 . Then we set rt

k
= rt

k
− mt

k
 . Suppose G(k)�(k)

(
H(k)

)H is the 

skinny SVD of P̂(k)Q̂(k) . We can update P̂(k) = G
(k)

rt
k

𝛴
(k)

rt
k

, Q̂(k) =
(
H

(k)

rt
k

)H

 , where G(k)

rt
k

 
consists of the first rt

k
 columns of G(k) and H(k)

rt
k

 consists of the first rt
k
 rows of H(k) . 

�
(k)

rt
k

 is a diagonal matrix whose diagonal entries are the largest rt
k
 eigenvalues of �(k) . 

In this way, we reduce rt and pre-estimate the rank of the tensor data.

1  http://​sipi.​usc.​edu/​datab​ase/.

http://sipi.usc.edu/database/
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Compared to TCTF, only half of matrices P̂(k) and Q̂(k) are calculated in (15) and 
(16), which cut the computational cost of Pt+1 and Qt+1 when n3 is large. When 
t ≥ t0 , in each iteration, the complexity of TCTF-M is 
O

(
r
(
n1 + n2

)
n3 log n3 + rn1n2

⌈
n3+1

2

⌉)
 , where r = rankt(X).

The convergence result of Algorithm  3.1 can be seen from [57], stated as 
follows.

Theorem  1  Assume that g(P,Q,X) =
1

2
‖P ∗ Q − X‖2

F
 and the sequence {

Pt,Qt,Xt
}
 generated by Algorithm 3.1 is bounded, then it satisfies the following 

properties: 

(1)	 gt ∶= g
(
Pt,Qt,Xt

)
 is monotonically decreasing. Actually, it satisfies the follow-

ing inequality: 

 where P̂ , Q̂ are from P and Q , respectively.
(2)	 any accumulation point 

(
P⋆,Q⋆,X⋆

)
 of the sequence 

{
Pt,Qt,Xt

}
 is a KKT point 

of problem (12).

4 � An improved tensor‑product factorization based method 
for tensor completion

In this section, we first establish a relationship between tubal rank and Tucker rank 
of the third order tensor. According to such relationship, we modify the tubal rank to 
double tubal rank and then establish a novel low rank tensor completion model with 
the introduced double tubal rank.

4.1 � Tensor completion model based on double tubal rank

From Lemma 5, the following result is direct.

Lemma 6  For a tensor X ∈ ℝn1×n2×n3 , it holds

Compared to Tucker rank, tubal rank does not involve the low rank structure 
information of the mode-3 unfolding matrix from Lemma 6. Hence, we define an 
improved tensor rank as follows:

gt − gt+1 ≥
1

2n3

‖‖‖P̂
t+1Q̂t+1 − P̂tQ̂t‖‖‖

2

F
≥ 0,

(17)rankt(X) ≤ rank
(
X(i)

)
≤ n3rankt(X), i ∈ [2].
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Based on Lemma 5, we change (18) into double tubal rank:

where X̃ ∈ ℝn3×p×q (pq = n1n2) is a tensor by reshaping the unfolding matrix X(3) 
satisfying (5) and hence X̃(1) = X(3).

Next, we discuss the relationship between Tucker rank and double tubal rank.

Lemma 7  Suppose that X ∈ ℝn1×n2×n3 and rankdt(X) is defined as in (19). Then

Proof  The result is immediate from Lemma 5 and Lemma 6. 	�  ◻

According to this lemma, the introduced double tubal rank can learn the global 
correlations within multi-dimensional data as well as the Tucker rank. In the next 
lemma, we prove a connection between double tubal rank and 3-tubal rank (tensor 
fibered rank).

Lemma 8  For a tensor X ∈ ℝn1×n2×n3 , we have

In particular, when X̃ ∈ ℝn3×n1×n2 , rankt(X̃) = rankt(X(13)).

Proof  By the definition of X(13) and Lemma 6, we have

Together with X̃(1) = X(3) , one has

Similar to the analysis above, we obtain

	�  ◻

Double tubal rank is a vector and its corresponding low rank tensor completion 
model will be a vector optimization problem. To keep things simple, we adopt the 
weighted rank 𝛾1 rankt(X) + 𝛾2 rankt(X̃) with a positive parameter �1, �2 as a measure 
of tensor rank. Hence the low rank tensor completion problem can be modeled as

(18)rankttr(X) =
(
rankt(X), rank(X(3))

)
.

(19)rankdt(X) =
(
rankt(X), rankt(X̃)

)
,

rankt(X) ≤ rank
(
X(i)

)
≤ n3 rankt(X), i ∈ [2],

rankt(X̃) ≤ rank
(
X(3)

)
≤ n3 rankt(X̃).

rankt(X̃)∕n2 ≤ rankt(X(13)) ≤ q rankt(X̃),

rankt(X̃)∕n1 ≤ rankt(X(23)) ≤ q rankt(X̃).

rankt(X(13)) ≤ rank(X(3)) ≤ n2 rankt(X(13)), rankt(X̃) ≤ rank(X̃(1)) ≤ q rankt(X̃).

rankt(X̃)∕n2 ≤ rankt(X(13)) ≤ q rankt(X̃).

rankt(X̃)∕n1 ≤ rankt(X(23)) ≤ q rankt(X̃).
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Clearly, (20) reduces to the classical low tubal rank tensor completion model when 
�1 = 1 and �2 = 0.

Similar to (12), we consider the following tensor factorization model

Motivated by the reweighted strategies [22, 41] and the supergradient concepts [3], 
problem (21) can be written as

Throughout this paper, Assumption 1 is assumed for �(⋅).

Assumption 1  The function �(⋅) ∶ ℝ+
→ ℝ+ is a proper, concave, lower semicontinuous 

function on [0,+∞) , and there exist a, b > 0 such that 𝜕𝜌(t) ⊂ [a, b] for any t ∈ [0,+∞).

Remark 2  Since �(⋅) is concave on [0,+∞) , by the definition of the supergradient, 
for any s and t, we have

Now, we are ready to update X, P, Q, U, V . First of all, by Assumption 1, we 
can update X  by

After updating X  , we need to compute the weighting �1, �2 by

Furthermore, since �(⋅) is a monotonically increasing function, P and Q can be 
updated by solving the following problem

Clearly, P and Q can be updated by (15) and (16) respectively.
Similarly, we can update Û and V̂  as follows:

(20)min
X

𝛾1 rankt(X) + 𝛾2 rankt(X̃), s.t. P𝛺(X −M) = 0.

(21)min
X,P,Q,U,V

𝛾1

2
‖P ∗ Q − X‖2

F
+

𝛾2

2
��U ∗ V − X̃��2F, s.t. P𝛺(X −M) = 0.

(22)

min
X,P,Q,U,V

1

2
𝜌
�‖P ∗ Q − X‖2

F

�
+

1

2
𝜌

���U ∗ V − X̃��2F
�
, s.t. P𝛺(X −M) = 0.

�(t) ≤ �(s) + ws(t − s), ∀ws ∈ ��(s).

(23)

X = argmin
P𝛺(X−M)=0

𝛾1

2
‖P ∗ Q − X‖2

F
+

𝛾2

2
��U ∗ V − X̃��2F

= argmin
P𝛺(X−M)=0

𝛾1

2
‖P ∗ Q − X‖2

F
+

𝛾2

2

���fold3
�
(U ∗ V)(1)

�
− X

���
2

F

=
1

𝛾1 + 𝛾2
P𝛺c

�
𝛾1P ∗ Q + 𝛾2fold3

�
(U ∗ V)(1)

��
+ P𝛺(M).

(24)𝛾1 ∈ 𝜕𝜌
�‖P ∗ Q − X‖2

F

�
, 𝛾2 ∈ 𝜕𝜌

���U ∗ V − X̃��2F
�
.

(25)argmin
P,Q

1

2
‖P ∗ Q − X‖2

F
.
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Based on above discussions, a tensor factorization based method can be outlined as 
Algorithm 4.1, denoted by DTRTC.

Remark 3  Similar to TCTF-M, it does not know the true multi-tubal rank of optimal 
tensor X  and X̃  in advance. Hence, we adopt the same rank estimation and rank 
decreasing strategy as in TCTF-M.

Complexity analysis: At each iteration, the cost of updating P and Q by (15) and 
(16) is O(r̂X

(
n1 + n2

)
n3 ⋅ log n3 + r̂Xn1n2

⌈
n3+1

2

⌉
) , respectively. The cost of updating 

U and V by (26) and (27) is O(r̂X̃
(
n3 + p

)
q log q + r̂X̃n3p

⌈
q+1

2

⌉
) , where r̂X and r̂X̃ is 

the estimated tubal rank of X  and X̃  , respectively. For updating X  by (23), the com-
putational cost for conducting the (inverse) DFT and matrix product is 
O(r̂X

(
n1 + n2

)
n3 log n3 + r̂Xn1n2

⌈
n3+1

2

⌉
+ r̂X̃

(
n3 + p

)
q log q + r̂X̃n3p

⌈
q+1

2

⌉
) . In step 

8, we use QR decomposition to estimate the target rank whose cost is 
O(r̂X

(
n1 + n2

)
n3 log n3 + r̂Xn1n2

⌈
n3+1

2

⌉
) and O(r̂X̃

(
n3 + p

)
q log q + r̂X̃n3p

⌈
q+1

2

⌉
) . 

In summary, the total cost at each iteration is 
O(r̂X

(
n1 + n2

)
n3 log n3 + r̂X̃

(
n3 + p

)
q log q + r̂Xn1n2

⌈
n3+1

2

⌉
+ r̂X̃n3p

⌈
q+1

2

⌉
).

(26)Û(k) =

⎧
⎪⎨⎪⎩

̄̃X(k)
�
V̂ (k)

�H�
V̂ (k)

�
V̂ (k)

�H�†

, k = 1,… ,
�
q+1

2

�
,

conj
�
Û(q−k+2)

�
, k =

�
q+1

2

�
+ 1,… , q,

(27)V̂ (k) =

⎧
⎪⎨⎪⎩

��
Û(k)

�H
Û(k)

�†�
Û(k)

�H ̄̃X(k), k = 1,… ,
�
q+1

2

�
,

conj
�
V̂ (q−k+2)

�
, k =

�
q+1

2

�
+ 1,… , q.
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4.2 � Convergence analysis

In this subsection, we present the convergence of DTRTC. The following notation 
will be used in our analysis. In problem (21), � is an index set which locates the 
observed data. We use �c to denote the complement of the set � with respect to the 
set {(i, j, k) ∶ i ∈ [n1], j ∈ [n2], k ∈ [n3]} . To simply the notation, we denote 
z ∶= (P,Q,U,V,X) , f (z) ∶=

1

2
𝜌
�‖P ∗ Q − X‖2

F

�
+

1

2
𝜌

���U ∗ V − X̃��2F
�
 and 

f t ∶= f (zt) in this subsection.

Theorem 2  Assume that the sequence 
{
Pt,Qt,Ut,Vt,Xt

}
 generated by Algorithm 4.1 

is bounded, then it satisfies the following properties: 

(1)	 f t is monotonically decreasing. Actually, it satisfies the following inequality: 

 where P̂ , Q̂ , Û , V̂  are from P , Q , U and V , respectively.
(2)	 any accumulation point 

(
P⋆,Q⋆,U⋆,V⋆,X⋆

)
 of the sequence 

{
Pt,Qt,Ut,Vt,Xt

}
 

is a KKT point of problem (21).

Proof  According to f t , we have that

where

Since Xt+1 is an optimal solution of X-subproblem, we have

f t − f t+1 ≥
𝛾 t
1

2n3

‖‖‖P̂
t+1Q̂t+1 − P̂tQ̂t‖‖‖

2

F
+

𝛾 t
2

2q

‖‖‖Û
t+1V̂ t+1 − ÛtV̂ t‖‖‖

2

F

+ a
‖‖‖X

t+1 − Xt‖‖‖
2

F
≥ 0,

(28)

f t − f t+1 =
1

2

(
𝜌

(‖‖Pt ∗ Qt − Xt‖‖2F
)
− 𝜌

(‖‖‖P
t+1 ∗ Qt+1 − Xt+1‖‖‖

2

F

))

+
1

2

(
𝜌

(‖‖‖U
t ∗ Vt − X̃

t‖‖‖
2

F

)
− 𝜌

(‖‖‖U
t+1 ∗ Vt+1 − X̃

t+1‖‖‖
2

F

))

≥
𝛾 t
1

2

(
‖‖Pt ∗ Qt − Xt‖‖2F −

‖‖‖P
t+1 ∗ Qt+1 − Xt+1‖‖‖

2

F

)

+
𝛾 t
2

2

(‖‖‖U
t ∗ Vt − X̃

t‖‖‖
2

F
−
‖‖‖U

t+1 ∗ Vt+1 − X̃
t+1‖‖‖

2

F

)
,

𝛾 t
1
∈ 𝜕𝜌

(‖‖Pt ∗ Qt − Xt‖‖2F
)
, 𝛾 t

2
∈ 𝜕𝜌

(‖‖‖U
t ∗ Vt − X̃

t‖‖‖
2

F

)
.
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According to the computation of Pt+1,Qt+1 and Lemma 3 in [57], we have

Similar result can be obtained that

Combining (28)-(31), it holds

Summing all the inequality (32) for all t, we obtain

Thus, there hold

Similar to the analysis of Equation (38)-(46) in [57] and � t
i
∈ [a, b] (i = 1, 2) , ones 

have

(29)

𝛾 t
1

2

‖‖‖P
t+1 ∗ Qt+1 − Xt+1‖‖‖

2

F
+

𝛾 t
2

2

‖‖‖U
t+1 ∗ Vt+1 − X̃

t+1‖‖‖
2

F
+ a

‖‖‖X
t+1 − Xt‖‖‖

2

F

≤
𝛾 t
1

2

‖‖‖P
t+1 ∗ Qt+1 − Xt‖‖‖

2

F
+

𝛾 t
2

2

‖‖‖U
t+1 ∗ Vt+1 − X̃

t‖‖‖
2

F
.

(30)

‖‖Pt ∗ Qt − Xt‖‖2F −
‖‖‖P

t+1 ∗ Qt+1 − Xt+1‖‖‖
2

F

=
‖‖‖P

t+1 ∗ Qt+1 − Xt‖‖‖
2

F
−
‖‖‖P

t+1 ∗ Qt+1 − Xt+1‖‖‖
2

F
+

1

n3

‖‖‖P̂
t+1Q̂t+1 − P̂tQ̂t‖‖‖

2

F
.

(31)

‖‖‖U
t ∗ Vt − X̃

t‖‖‖
2

F
−
‖‖‖U

t+1 ∗ Vt+1 − X̃
t+1‖‖‖

2

F

=
‖‖‖U

t+1 ∗ Vt+1 − X̃
t‖‖‖

2

F
−
‖‖‖U

t+1 ∗ Vt+1 − X̃
t+1‖‖‖

2

F
+

1

q

‖‖‖Û
t+1V̂ t+1 − ÛtV̂ t‖‖‖

2

F
.

(32)
f t − f t+1 ≥

𝛾 t
1

2n3

‖‖‖P̂
t+1Q̂t+1 − P̂tQ̂t‖‖‖

2

F
+

𝛾 t
2

2q

‖‖‖Û
t+1V̂ t+1 − ÛtV̂ t‖‖‖

2

F

+ a
‖‖‖X

t+1 − Xt‖‖‖
2

F
≥ 0.

(33)

f 1 − f t+1 ≥
1

2n3

n∑
t=1

𝛾 t
1

‖‖‖P̂
t+1Q̂t+1 − P̂tQ̂t‖‖‖

2

F
+

1

2q

n∑
t=1

𝛾 t
2

‖‖‖Û
t+1V̂ t+1 − ÛtV̂ t‖‖‖

2

F

+ a

n∑
t=1

‖‖‖X
t+1 − Xt‖‖‖

2

F
.

(34)
lim
t→+∞

𝛾 t
1

‖‖‖P̂
t+1Q̂t+1 − P̂tQ̂t‖‖‖

2

F
= 0, lim

t→+∞
𝛾 t
2

‖‖‖Û
t+1V̂ t+1 − ÛtV̂ t‖‖‖

2

F
= 0,

lim
t→+∞

‖‖‖X
t+1 − Xt‖‖‖

2

F
= 0.

lim
t→+∞

𝛾 t
1

(
X̄t − P̂tQ̂t

)(
Q̂t
)H

= 0, lim
t→+∞

𝛾 t
1

(
P̂t
)H(

X̄t − P̂tQ̂t
)
= 0.
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Since the sequence 
{
Pt,Qt,Ut,Vt,Xt

}
 generated by Algorithm 4.1 is bounded, there 

is a subsequence {Ptj ,Qtj , Utj ,Vtj ,Xtj} that converges to a point 
(
P⋆,Q⋆,U⋆,V⋆,X⋆

)
 . 

Therefore, the following two equations hold:

Similarly, we have

On the other hand, we update Xt+1 =
1

� t
1
+� t

2

P�c

(
� t
1
P

t+1 ∗ Q
t+1 + � t

2
fold

3

[(
U
t+1 ∗ V

t+1
)
(1)

])

+P�(M) at each iteration. Thus, X⋆ always satisfies the following two equations

Furthermore, there exists 𝛬⋆ such that

By (35)-(38), 
(
P⋆,Q⋆,U⋆,V⋆,X⋆

)
 is a KKT point of problem (21). 	�  ◻

5 � Numerical experiments

In this section, we conduct some experiments on real-world dataset to compare the 
performance of TCTF-M and DTRTC to show their validity. We employ the peak 
signal-to-noise rate (PSNR) [39], the structural similarity (SSIM) [39], the feature 
similarity (FSIM) [50] and the recovery computation time to measure the quality of 
the recovered results. We compare TCTF-M for the matrix completion problem with 
four existing methods, including SRMF [34], MC-NMF [45], FPCA [24] and SPG 
[47]. We compare DTRTC for the tensor completion problem with WSTNN [55], 
TCTF [57], TNN [52], NCPC [44] and NTD [42]. All methods are implemented 
on the platform of Windows 10 and Matlab (R2020b) with an Intel(R) Core(TM) 
i7-7700 CPU at 3.60GHz and 24 GB RAM.

5.1 � Grayscale image inpainting

In this subsection, we use the USC-SIPI image database2 to evaluate our proposed 
method TCTF-M for grayscale image inpainting. In our test, six images are ran-
domly selected from this database, including texture images “Plastic” and “Bark”, 

(35)𝛾⋆
1

(
X̄⋆ − P̂⋆Q̂⋆

)(
Q̂⋆

)H
= 0, 𝛾⋆

1

(
P̂⋆

)H(
X̄⋆ − P̂⋆Q̂⋆

)
= 0.

(36)𝛾⋆
2

(
̄̃X⋆ − Û⋆V̂⋆

)(
V̂⋆

)H
= 0, 𝛾⋆

2

(
Û⋆

)H( ̄̃X⋆ − Û⋆V̂⋆

)
= 0.

(37)

P𝛺c

(
X⋆ −

1

𝛾⋆
1
+ 𝛾⋆

2

(
𝛾⋆
1
P⋆ ∗ Q⋆ + 𝛾⋆

2
fold3

[(
U⋆ ∗ V⋆

)
(1)

]))
= 0, P𝛺

(
X⋆ −M

)
= 0.

(38)P𝛺

(
X⋆ −

1

𝛾⋆
1
+ 𝛾⋆

2

(
𝛾⋆
1
P⋆ ∗ Q⋆ + 𝛾⋆

2
fold3

[(
U⋆ ∗ V⋆

)
(1)

]))
+ 𝛬⋆ = 0.

2  http://​sipi.​usc.​edu/​datab​ase/.

http://sipi.usc.edu/database/
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high altitude aerial images “Pentagon” and “Wash”, other images “Male” and “Air-
port”. Among them, only the pixels of “Wash” is 2250 × 2250 , and the others are 
1024 × 1024 . The data of images are normalized in the range [0, 1].

For each taken image, we randomly sample by the sampling ratio p = 70% . 
The initial matrix rank is set to 100 in SRMF and MC-NMF. In TCTF-
M, “Wash” data sets form a tensor of size 2250 × 18 × 125 and the oth-
ers set form a tensor of size 1024 × 8 × 128 . The initial tubal rank is set to 
(round(1.5r), round(r∕2),… , round(r∕2)) with r = round(h∕n3∕3) in TCTF-M. Fur-
thermore, t0 is set to be 2.

In Table 1, we present the results of all five methods for different images, and 
the best results are highlighted in bold. It is easy to see that TCTF-M outperforms 
the other four methods. TCTF-M is the fastest method, about 3 times faster than the 
second fastest method MC-NMF. MC-NMF is only slightly longer than TCTF-M in 
running time, but it has no exact recovery performance guarantee. Both SRMF and 
FPCA are far inferior to TCTF-M in terms of running time and inpainting results. 
Although SPG has similar PSNR, SSIM, and FSIM values as TCTF-M, its running 
time is almost 12 times that of TCTF-M. Especially for the more challenging image 

Fig. 3   Examples of grayscale image inpainting
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Fig. 4   Grayscale image inpainting results. From top to bottom, the results are for “Plastic”, “Bark”, “Pen-
tagon”, “Male”, “Airport” and “Wash”, respectively
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“Wash” inpainting, TCTF-M is about 73.6 times faster than SPG. Since SPG has 
to compute SVD at each iteration, it runs slower. In summary, TCTF-M not only 
achieves the best inpainting results but also runs very fast.

To further demonstrate the performance, images recovered by different algo-
rithms are shown in Fig.  3. Enlarged views of the recovered images evidently 
show the recovery differences. It can be seen that MC-NMF fails to recover the 
“Male” image. Furthermore, the recovered images of SRMF and MC-NMF still 
have some visible reconstruction errors, such as roads in “Pentagon” image, river 
edge in “Wash” image and lines in “Airport image”. TCTF-M and SPG recover 
these details with better performance.

To further demonstrate the advantage of the proposed algorithms in terms of 
computational cost, we make a comparison of computation complexity for fives 
methods in Fig. 4, which shows the PSNR, SSIM, and FSIM values over running 
time. In order to see the performance, the first 15 (120) seconds are selected for 
comparison. We can assert that the PSNR, SSIM, and FSIM values of methods 
based on TCTF-M optimization rapidly increase to the highest values with less 
running time than other methods.

5.2 � High altitude aerial image inpainting

This subsection applies DTRTC to high altitude aerial image inpainting. We also 
use the USC-SIPI image database to evaluate our proposed method for high altitude 
aerial image inpainting. In our test, four high altitude aerial images are randomly 
selected from this database. The first three images both are 1024 × 1024 × 3 pixels 
and that of the last one is 2250 × 2250 × 3 pixels. The data of images are normalized 
in the range [0, 1].

For each chosen image, we randomly sample by the sam-
pling ratio p = 40%, 45%, 50% . We set the initial double tubal rank 
r0
X
= (200, 30, 30), r0

X̃
= (3,… , 3) in DTRTC, the initial tubal rank (200, 30, 30) in 

TCTF, the initial CP rank 100 in NCPC and the initial Tucker rank (100, 100, 3) in 
NTD. In DTRTC, �(x) =

√
x + � and t0 = 1 . “Wash” data sets form a tensor of size 

3 × 50625 × 100 and the others set form a tensor of size 3 × 8192 × 128 . In experi-
ments, the maximum iterative number is set to be 100 and precision � is set to be 
1e−4.

We present the image inpainting results of the four tested images in Table  2, 
and the best results are highlighted in bold. For visual comparisons, we show the 
results of the recovered high altitude aerial images by different methods for p = 40% 
in Fig. 5. The proposed DTRTC algorithm can be seen to achieve the best perfor-
mance. The four methods based on tubal rank DTRTC, WSTNN, TCTF, and TNN 
perform better on PSNR, SSIM, and FSIM values than the method based on CP 
rank, NCPC, and the method based on Tucker rank, NTD except for the “Wash” 
image. Furthermore, TCTF and TNN do not use all low rank structures of ten-
sors [55], DTRTC and WSTNN are more comprehensive to preserve all low rank 
structures of tensor data. However, it can be seen from Lemma  8 that WSTNN 
over-utilizes the low rank information of the tensor, resulting in too long running 
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time and little improvement in PSNR, SSIM and FSIM values. For the large scale 
“Wash” image, the recovery of WSTNN, TCTF, NCPC and NTD is unsatisfactory, 
but DTRTC and TNN can successfully recover the image. However, since TNN and 
WSTNN require T-SVD decomposition at each step, as the tensor size increases, its 
calculation time increases significantly. As a result, DTRTC both produces excellent 
inpainting results and runs extremely fast.

5.3 � Discussion of the size n
2
 and n

3

In this subsection, we discuss the influence of different sizes n2 and n3 when we 
reshape a matrix as a third order tensor. Table 3 reports PSNR, SSIM, FSIM values 
and running time of recovered grayscale image “Wash” by TCTF-M with different 
n3 . From Table 3, we can see that TCTF-M is not very sensitive to changes in the 
size n3 when n3 ∈ [25, 450] . At the same time, we give PSNR, SSIM, FSIM val-
ues and running time of recovered high altitude aerial image “San Francisco” under 

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5   Examples of high altitude aerial image inpainting with p = 40% . The images are “San Francisco”, 
“Richmond”, “Shreveport” and “Wash”, respectively. For better visualization, we present the zoom-in 
region and the corresponding partial residuals of the region
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sampling ratio p = 45% by DTRTC with different n3 in Table 4. It can be seen from 
Table 4 that DTRTC is not very sensitive to changes of size n3 when n3 ∈ [64, 8192] , 
but they directly affect the computational complexity of the proposed algorithm. 
Therefore, we suggest that n3 be about 100 in the experiment to obtain better results.

5.4 � Effectiveness of adaptive selection of parameters 

1
 and 


2

In this subsection, we further illustrate the effectiveness of adaptive selection of 
parameters �1 and �2 in the proposed framework. Specifically, we compare the per-
formance of DTRTC with fixed �1(�2 = 1 − �1) from 0.1 to 0.9.

Table  5 reports the PSNR, SSIM, FSIM values and running time of recovered 
high altitude aerial image “San Francisco” under sampling ratio p = 45% by DTRTC 
with different selection of �1 . It is easy to observe that better recovered results can be 
obtained by DTRTC by adaptive selection of �1.

Table 3   The recovered grayscale image “Wash” by TCTF-M with different n
3

Bold values indicate the best results

n
3

5 25 45 75 125 225 450 750 1125

PSNR 23.498 24.269 24.347 24.358 24.376 24.426 24.414 23.712 21.421
SSIM 0.776 0.820 0.827 0.830 0.832 0.836 0.836 0.822 0.736
FSIM 0.996 0.997 0.997 0.997 0.997 0.997 0.997 0.996 0.992
Time 4.864 3.108 3.075 3.070 2.377 2.511 2.286 3.663 11.087

Table 4   The recovered high altitude aerial image “San Francisco” by DTRTC with different n
3

Bold values indicate the best results

n
3

4 32 64 128 256 512 1024 2048 4096 8192

PSNR 29.092 30.440 30.550 30.587 30.730 30.902 31.024 31.050 31.065 31.070
SSIM 0.783 0.840 0.844 0.846 0.851 0.858 0.862 0.863 0.864 0.864
FSIM 0.979 0.983 0.983 0.984 0.984 0.985 0.985 0.985 0.985 0.985
Time 7.368 5.931 5.416 5.450 5.759 6.227 6.744 7.676 7.933 9.680

Table 5   The recovered results of “San Francisco” by DTRTC with different �
1

Bold values indicate the best results

�
1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DTRTC​

PSNR 29.187 29.556 29.669 29.666 29.659 29.695 29.610 29.368 28.920 30.550
SSIM 0.791 0.817 0.822 0.820 0.817 0.817 0.812 0.801 0.781 0.844
FSIM 0.979 0.980 0.980 0.980 0.980 0.980 0.980 0.979 0.977 0.983
Time 14.660 8.470 6.191 5.680 5.219 4.954 4.940 4.977 5.527 5.416
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6 � Conclusion

In this paper, we established a relationship between matrix rank and tensor tubal 
rank. Based on the relationship, we modeled the matrix completion problem as a 
third order tensor completion problem and proposed a two-stage tensor factorization 
based algorithm, which made a drastic reduction on the dimension of data and hence 
cut down on the running time. For low rank tensor completion problem, we intro-
duced double tubal rank. Compared to tubal rank, tensor fibered rank, double tubal 
rank can not only fully exploit the low rank structures of the tensor but also avoid 
the low rank structure redundancy. Based on this rank, a reweighted tensor factoriza-
tion algorithm was proposed. The reported experiments demonstrated that our pro-
posed algorithms were much more efficient than most of state-of-the-art matrix/ten-
sor completion algorithms.
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