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Abstract
Low Tucker rank tensor completion has wide applications in science and engi-
neering. Many existing approaches dealt with the Tucker rank by unfolding
matrix rank. However, unfolding a tensor to a matrix would destroy the data’s
original multi-way structure, resulting in vital information loss and degraded
performance. In this article, we establish a relationship between the Tucker
ranks and the ranks of the factor matrices in Tucker decomposition. Then, we
reformulate the low Tucker rank tensor completion problem as a multilinear
low rank matrix completion problem. For the reformulated problem, a sym-
metric block coordinate descent method is customized. For each matrix rank
minimization subproblem, the classical truncated nuclear norm minimization
is adopted. Furthermore, temporal characteristics in image and video data are
introduced to such a model, which benefits the performance of the method.
Numerical simulations illustrate the efficiency of our proposed models and
methods.
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1 INTRODUCTION

A tensor is a multidimensional array. Recently, more and more applications of tensors are found in signal process-
ing,1,2 face recognition,3 computer vision,4-7 high-order web link analysis,8 data mining,9 and collaborative filtering.10 In
real-world applications, tensor may be incomplete from the missing information or limitation of data transmission band-
width, which leads to the low rank tensor completion problem. The low rank tensor completion problem is to reconstruct
a tensor from the observed incomplete tensor, which has a wide range of realistic applications, such as seismic data recon-
struction,11 color image video recovery,12-19 and medical image processing.20,21 Mathematically, a unified low rank tensor
completion model can be written as

min rank() s.t. PΩ() = PΩ
(


)
, (1)

where  ∈ Rn1×···×nm is the underlying tensor, Ω is an index set of observed entries and PΩ(⋅) is a projection operator.

[Correction added on 08 September 2022, after first online publication: equations in sections 2 and 4.1 have been corrected in this version.]
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Low rank matrix completion22,23 can be regarded as a special case of low rank tensor completion. Different from
the matrix case, there are various tensor decompositions, including CANDECOMP/PARAFAC (CP) decomposition,24,25

Tucker decomposition,26 tensor train decomposition,27 and tensor singular value decomposition (SVD).28,29 Correspond-
ing to these decompositions, tensor ranks are called the CP-rank, Tucker rank, tensor train rank, and tubal rank,
respectively. Different tensor ranks lead to various low rank tensor completion models. It is NP-hard to compute
CP-rank.30 Thus, it is challenging to consider the low CP-rank tensor completion model. Compared with CP-rank, the ten-
sor train rank is much easier to compute, but it always has a fixed pattern, that is, smaller for the border cores and larger
for the middle cores, which might not be the optimum for specific data tensor.31 More recently, tubal rank, correspond-
ing to a tensor–tensor product and the tensor SVD of a third-order tensor was introduced in Reference 28. Based on tubal
rank, the low tubal rank tensor completion problem was discussed in References 28, 29, and 32. Although models and
related methods based on tubal rank are effective to a certain extent, tubal rank is applicable only for third-order tensors.
However, many tensor data, in reality, are of higher-order. For example, color video data is expressed by a fourth-order
tensor.

Tucker rank is a commonly used definition of higher-order tensor ranks. For an mth order tensor, Tucker rank is a
vector of all unfolding matrix ranks. Based on Tucker rank, Liu et al.5 defined the nuclear norm of a tensor by the average
of the nuclear norm of each unfolding matrix. Xu et al.33 used matrix factorization to preserve the low rank structure of
unfolded matrices. An alternating proximal gradient method in Reference 34 was proposed based on sparse nonnegative
Tucker decomposition.

In this article, we establish a relationship between the factor matrix rank in Tucker decomposition and the unfolding
matrix rank. Then we reformulate the low Tucker rank tensor completion problem as a multilinear low rank and sparse
matrix completion problem. This reformulation not only avoids the destroying of the multi-dimensional structure, but
also explores the low rank information. In recent years, truncated nuclear norm (TNN), discarding large singular values,
is a better estimation of matrix rank. It was shown in Reference 35 that the truncated nuclear norm regularization can
achieve better performance than nuclear norm regularization for matrix completion problems. Then TNN is adopted
to measure the matrix rank. Furthermore, l1 is adopted to estimate the sparsity of core tensor and factor matrices and
a relaxation problem is arrived. For the relaxation problem, we propose a symmetric block coordinate descent (SBCD)
algorithm.

This article is organized as follows. We first recall notation and state some basic properties of tensors in Section 2. Based
on the definition of Tucker decomposition, a multilinear low rank and sparse matrix minimization model is reformulated
for the low Tucker rank tensor completion problem. For the reformulated model, the truncated nuclear norm and l1 norm
of factor matrices, together with l1 norm of core tensor are adopted to relax the reformulated problem in Section 3. To solve
the relaxation problem, a SBCD algorithm is proposed. We further improve the model to fit the tensor data with temporal
characteristics better and modify the proposed algorithm in Section 4. Numerical examples are reported in Section 5 to
show the performance of our proposed models and methods. Section 6 briefly concludes our study and introduces the
future work.

2 PRELIMINARY KNOWLEDGE ON TENSOR

In this section, we recall some notations on tensor and its Tucker decomposition. More details can be found in Kolda and
Bader’s review.36

Tensor  ∈ Rn1×n2×···×nm is said to be an m-order (n1, … ,nm)-dimensional real tensor, whose elements are denoted
as i1i2···im , where ij ∈ [nj] and j ∈ [m]. Here [n] ∶= {1, 2, … ,n} for a positive integer n. A fiber of tensor  is a vector
defined by fixing all indices but one and a slice of tensor  is a matrix defined by fixing all indices but two. The mode-s
unfolding T(s) of tensor  is a matrix in Rns×Ns with its (i, j)th element being i1···is−1iis+1···im , where j = 1 +

∑m
k=1,k≠s(ik − 1)nk,

nk =
∏

l≠s,l<k nl and Ns =
∏m

k=1,k≠snk. The unfolding matrix can be obtained by “tens2mat( , s)” in Matlab. The opposite
operation “fold” is defined as folds(T(s)) ∶=  .

Based on the definition of mode-i unfolding matrix, Tucker rank of tensor is defined as follows.

Definition 1. For a tensor  ∈ Rn1×n2×···×nm , let T(i) ∈ ni × Ni with Ni = n1 × · · · × ni−1 × ni+1 × · · · × nm be the mode-i
unfolding matrix for i ∈ [m]. Then Tucker rank of  is defined as

ranktc( ) =
(
rank(T(1)), … , rank(T(m))

)
.
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Now we recall the definition of k-mode product.

Definition 2. For a given tensor  ∈ Rn1×n2×···×nm and a matrix M ∈ RJk×nk , the mode-k product of  with M is a tensor
of (n1 × · · · × nk−1 × Jk × nk+1 × · · · × nm) with its entries

( ×k M)i1i2···im =
nk∑

jk=1
Ti1i2···ik−1jkik+1···im Mikjk .

For matrices M, Q, M(1), and M(2) of appropriate sizes, there hold

 ×i M ×j Q = ( ×i M) ×j Q = ( ×j Q) ×i M, i ≠ j,
 ×i M(1) ×i M(2) =  ×i (M(2)M(1)).

Let  =  ×1 V (1) ×2 V (2) × · · · ×m V (m). Then for any i ∈ [m],

T(i) = V (i)G(i)
(

V (m)
⊗ · · ·⊗ V (i+1)

⊗ V (i−1)
⊗ · · ·⊗ V (1))T

, (2)

where A ⊗ B denotes the Kronecker product of A and B, G(i) is the mode-i unfolding matrix of tensor . Based on this
notation, we are ready to present the definition of orthogonal Tucker decomposition as follows.

Definition 3. Suppose that

 =  ×1 U (1) ×2 · · · ×m U (m)
, (3)

where  ∈ Rr1×r2×···×rm , ri = rank
(

T(i)
)

and U (i) ∈ Rni×ri is orthogonal for all i ∈ [m]. Such tensor  is called a core tensor
and (3) is called an orthogonal Tucker decomposition of  .

Clearly, Tucker decompositions are not unique. In fact, for any orthogonal matrix V
(i)
∈ Rri×ri , the following decom-

position is also an orthogonal Tucker decomposition of 

 =
(
 ×1 V

(1)
×2 · · · ×m V

(m))
×1

(
U (1)

(
V
(1))−1

)
×2 · · · ×m

(
U (m)

(
V
(m))−1

)

if  =  ×1 U (1) ×2 · · · ×m U (m) is an orthogonal Tucker decomposition.
Let  =  ×1 U (1) ×2 · · · ×m U (m) be an orthogonal Tucker decomposition with  ∈ Rr1×r2×···×rm and orthogonal matri-

ces U (i) ∈ Rni×ri for all i ∈ [m]. Denote ∈ Rn1×n2×···×nm and V (i) ∈ Rni×ni with their entries

i1i2···im =

{
i1i2···im ij ≤ rj, j ∈ [m],
0 otherwise,

V (i)(∶, j) =

{
U (i)(∶, j) j ≤ ri,

0 otherwise,
i ∈ [m].

(4)

By direct computation, we have

 =  ×1 V (1) ×2 · · · ×m V (m)
.

Before we end this section, some notations used later are presented here. For the same-sized tensors,  ∈ Rn1×n2×···×nm ,
their inner product is the sum of products of the entries, that is, ⟨,⟩ = ∑n1,n2,… ,nm

i1,i2,… ,im=1i1i2···imi1i2···im . Then the Frobenius
norm of tensor  is ||||F =

√⟨,⟩ and ||||l1 ∶=
∑

i1,… ,im

|i1···im |. For a matrix X ∈ Rn×n and s ∈ [n], the truncated

nuclear norm of X is ||X||∗,s = ∑n
i=n−s+1𝜎i(X), that is, the sum of s smallest singular values, where 𝜎1(X) ≥ 𝜎2(X) ≥ · · · ≥

𝜎n(X) are the singular values of X .
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3 REFORMULATION OF LOW TUCKER RANK TENSOR COMPLETION

Tucker rank is a vector of matrix ranks, which makes tensor rank minimization problem be a vector optimization. To
keep things simple, we use the sum of Tucker rank as a tensor rank, and hence model (1) can be written as

min


m∑
i=1

rank
(

X(i)
)

s.t. PΩ() = PΩ
(


)
. (5)

Combining the definition of Tucker decomposition and notations (4), we consider the following multilinear matrix rank
minimization problem

min
,V (1)

,… ,V (m)

∑m
i=1rank

(
V (i))

,

s.t. PΩ
(
 ×1 V (1) ×2 · · · ×m V (m)) = PΩ

(


)
,

 ∈ Rn1×n2×···×nm
, V (i) ∈ Rni×ni

, i ∈ [m].

(6)

Now we are ready to establish the equivalence between problems (5) and (6). To this end, the following Lemma is
needed.

Lemma 1. Suppose that  ∈ Rn1×n2×···×nm and  =  ×1 V (1) ×2 · · · ×m V (m). Then rank
(

T(i)
)
≤ rank

(
V (i)).

Proof. The result is clear from Equation (2) and the rank property of matrix product. ▪

Theorem 1. Problems (5) and (6) are equivalent. That is, they have the same optimal values. Furthermore, any optimization
solution of problem (5) returns an optimization solution of (6), and vice versa.

Proof. Suppose that
(
,V (1)

, … ,V (m)) is an optimal solution tuple of problem (6) and  is an optimal solution of (5).
Let  =  ×1 V (1) ×2 · · · ×m V (m). We first show that

∑m
i=1rank

(
T(i)

)
=
∑m

i=1rank
(

V (i)). Otherwise,
∑m

i=1rank
(

T(i)
)
<∑m

i=1rank
(

V (i)) from Lemma 1. Let  =  ×1 U (1) ×2 · · · ×m U (m) be an orthogonal Tucker decomposition. Let and V (i)

be defined by  and U (i) as in (4). Then  =  ×1 V (1) ×2 · · · ×m V (m) with rank
(

V (i)
)
= rank

(
T(i)

)
for all i ∈ [m]. Clearly,

(,V (1)
, … ,V (m)) is a feasible solution tuple of (6), and hence

m∑
i=1

rank
(

V (i))
≤

m∑
i=1

rank
(

V (i)
)
=

m∑
i=1

rank
(

T(i)
)
<

m∑
i=1

rank
(

V (i))
,

which arrives at a contradiction. So we can assert that

m∑
i=1

rank
(

T(i)
)
=

m∑
i=1

rank
(

V (i))
.

From Definition 3 and (4), there exist  ∈ Rn1×n2×···×nm , V (i) ∈ Rni×ni (i ∈ [m]) such that  =  ×1 V (1) ×2 · · · ×m
V (m) and rank

(
V (i)) = rank

(
X(i)

)
for i ∈ [m]. Obviously, such (,V (1)

, … ,V (m)) is a feasible solution tuple of (6).
Hence

∑m
i=1rank

(
V (i))

≥
∑m

i=1rank
(

V (i)). On the other hand,
∑m

i=1rank
(

V (i)) = ∑m
i=1rank

(
X(i)

)
≤
∑m

i=1rank
(

T(i)
)
=∑m

i=1rank
(

V (i)) since  is an optimal solution of problem (5) and  is a feasible solution of (5).
Hence

∑m
i=1rank

(
X(i)

)
=
∑m

i=1rank
(

V (i)) and the equivalence between problem (5) and problem(6) is established now.
From the above procedure,  is an optimal solution of (5) and (,V (1)

, … ,V (m)) is an optimal solution tuple of (6).
This completes the proof. ▪

Clearly, when  is of lower rank on mode i, that is, ri < ni, its factor matrix V (i) ∈ Rni×ni has ni − ri columns of which
elements can be all zeros. Moreover, corresponding fibers of the core tensor ∈ Rn1×···×nm are also zeros. To capture these
zeros, we impose the 𝓁1 norm regularization on and V (i)’s in the objective function. Since the truncated nuclear norm
achieves an accurate and robust approximation to matrix rank,35 we adopt it in problem (6) to relax matrix rank function.
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Hence, we consider the following relaxed problem

min
∑m

i=1

(‖‖V (i)‖‖∗,ri
+ 𝜆 ‖‖V (i)‖‖l1

)
+ 𝜆||||l1 ,

s.t. PΩ
(
 ×1 V (1) ×2 · · · ×m V (m)) − PΩ

(


)
= 0,

 ∈ Rn1×n2×···×nm
, V (i) ∈ Rni×ni

, i ∈ [m].

(7)

To solve such a problem, we further introduce surrogate tensor variable and matrices W (i) to rewrite the problem as:

min
∑m

i=1

(‖‖V (i)‖‖∗,ri
+ 𝜆 ‖‖W (i)‖‖l1

)
+ 𝜆||||l1 ,

s.t. PΩ( − ) = 0,  =  ×1 V (1) ×2 · · · ×m V (m)
, W (i) = V (i)

.

(8)

By penalizing the constraint =  ×1 V (1) ×2 · · · ×m V (m) and W (i) = V (i), we get the following problem

min
∑m

i=1

(
𝜇

‖‖V (i)‖‖∗,ri
+ 𝜇𝜆 ‖‖W (i)‖‖l1

+ 1
2
‖‖W (i) − V (i)‖‖2

F

)
+ 𝜇𝜆||||l1 + 𝓁

(
,V (1)

, … ,V (m)
,

)
,

s.t. PΩ( − ) = 0.
(9)

Here 𝜇 > 0 is a penalty parameter and

𝓁(,V ,) ≜ 𝓁
(
,V (1)

, … ,V (m)
,

)
= 1

2
‖‖‖ ×1 V (1) ×2 · · · ×m V (m) −‖‖‖

2

F
.

4 AN SBCD ALGORITHM

4.1 Algorithm

In this subsection, we adopt an SBCD algorithm for solving (9). Before proceeding, we recall the following results, which
are adopted to deal with the subproblems.

Lemma 2 (37,38). For a given matrix Y ∈ Rm×n with m ≤ n, let its SVD be Y = UY Diag(𝜸)V⊤

Y . For each vector w ∈ Rm

and a scalar 𝛼 > 0, let s
𝛼

(𝜸,w) = max(0, 𝜸 − 𝛼w). Then

X ∶= Sv(Y ,w) = UY Diag (s
𝛼

(𝜸,w))V⊤

Y

is an optimal solution of the problem

min
X∈Rm×n

f (X) ∶= 𝛼
m∑

i=1
wi𝜎i(X) +

1
2
||X − Y ||2F .

Lemma 3 (39). For a given vector y ∈ Rm and a scalar 𝛼 > 0, there holds

x ∶= T
𝛼

(y) = sign(y) ⋅max(0, |y| − 𝛼)

is an optimal solution of the problem

min
x∈Rm

f (x) ∶= 𝛼||x||l1 +
1
2
||x − y||2s .

Based on these results, we are ready to update
(


k
,

k
,V (1,k)

, … ,V (m,k)) according to an SBCD method proposed in
Reference 34. For convenience of notation, denote

V (j<i,k) ∶=
(

V (1,k)
,V (2,k)

, … ,V (i−1,k))
, V (j≥i,k) ∶=

(
V (i,k)

, … ,V (m,k))
.
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Similarly, we denote W (j<i,k) and W (j≥i,k).
For fixed matrix vector

(
V (j<i,k)

,V (j≥i,k−1)) and tensork−1, core tensor(i,k) can be updated by solving the following
problem

min
(i,k)

𝜇𝜆

‖‖(i,k)‖‖l1
+ 𝓁

(

(i,k)
,V (j<i,k)

,V (j≥i,k−1)
,

k−1)
, (10)

which is the classical LASSO problem with the variable(i,k). Although (10) is convex, there is no closed-form solution.
To solve problem (10), we linearize the quadratic term of its objective function with an extrapolation point ̂H(i,k) as follows

𝓁
(

(i,k)
,V ( j<i,k)

,V ( j≥i,k−1)
,

k−1) ≈ 𝓁
(
̂
(i,k)
,V ( j<i,k)

,V ( j≥i,k−1)
,

k−1
)
+
⟨
𝛻𝓁,(i,k) − ̂

(i,k)⟩ + L(i,k)


2
‖‖‖

(i,k) − ̂
(i,k)‖‖‖

2

F
.

(11)
Here L(i,k)


≥ L(f ) is a parameter with L(f ) being the spectral radius of matrix

((
V (1,k))TV (1,k)

)
⊗ · · ·⊗

((
V (i−1,k))TV (i−1,k)

)
⊗

((
V (i,k−1))TV (i,k−1)

)
⊗ · · ·⊗

((
V (m,k−1))TV (m,k−1)

)

and

∇𝓁 = ∇𝓁
(
̂
(i,k)
,V (j<i,k)

,V (j≥i,k−1)
,

k−1
)

=
(
̂
(i,k) ×1 V (1,k) ×2 · · · ×i−1 V (i−1,k) ×i V (i,k−1) ×i+1 · · · ×m V (m,k−1) −k−1

)

×1
(

V (1,k))T ×2 · · · ×i−1
(

V (i−1,k))T ×i
(

V (i,k−1))T ×i+1 · · · ×m
(

V (m,k−1))T
.

Then (10) can be relaxed as

min
(i,k)

𝜇𝜆

‖‖(i,k)‖‖l1
+
⟨
𝛻𝓁,(i,k) − ̂

(i,k)⟩ + L(i,k)


2
‖‖‖

(i,k) − ̂
(i,k)‖‖‖

2

F
. (12)

By Lemma 3, we update core tensor(i,k) by


(i,k) = argmin

(i,k)
𝜇𝜆

‖‖‖
(i,k)‖‖‖l1

+
⟨
𝛻𝓁,(i,k) − ̂

(i,k)⟩ + L(i,k)


2
‖‖‖

(i,k) − ̂
(i,k)‖‖‖

2

F

= argmin
(i,k)

𝜇𝜆

‖‖‖
(i,k)‖‖‖l1

+
L(i,k)


2

‖‖‖‖‖‖

(i,k) −

L(i,k)


̂
(i,k) − 𝛻𝓁

L(i,k)


‖‖‖‖‖‖

2

F

= T 𝜇𝜆

L(i,k)


⎛
⎜⎜⎝

L(i,k)


̂
(i,k) − 𝛻𝓁

L(i,k)


⎞
⎟⎟⎠
. (13)

Here, we take

̂
(i,k) = (i,k) + 𝜔(i,k)



(

(i−1,k) −(i−2,k))

,

L(i,k)


= ‖‖‖V (1,k)‖‖‖
2

2
× · · · × ‖‖‖V (i−1,k)‖‖‖

2

2
× ‖‖‖V (i,k−1)‖‖‖

2

2
× · · · × ‖‖‖V (m,k−1)‖‖‖

2

2
+ 1,

where

𝜔

(i,k)


= min
⎛
⎜⎜⎝
�̂�

(i,k)

, 0.9999

√√√√L(i−1,k)


L(i,k)


⎞
⎟⎟⎠
, �̂�

(i,k)


=
t(i-1,k)


− 1

t(i,k)


,

t(0,1)


= 1, t(0,k)


= t(m,k−1)


, for k ≥ 2, t(i,k)


= 1
2

(
1 +

√
1 + 4

(
t(i,k)


)2
)
.
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For fixed variable V (i,k−1), matrix W (i,k) is updated by

W (i,k) ∶= argmin
W (i,k)

𝜇𝜆

‖‖‖W (i,k)‖‖‖l1
+ 1

2
‖‖‖W (i,k) − V (i,k−1)‖‖‖

2

F
. (14)

From Lemma 3, it holds

W (i,k) = T
𝜇𝜆

(
V (i,k−1))

. (15)

For fixed variables 
(i,k), W (i,k)

, V (j<i,k)
, V (j>i,k−1) and tensor k−1, factor matrix V (i,k) is updated by

optimizing

min
V (i,k)

𝜇

‖‖V (i,k)‖‖∗,ri
+ 𝓁

(

(i,k)
,V (j<i,k)

,V (j≥i,k−1)
,

k−1) + 1
2
‖‖V (i,k) −W (i,k)‖‖2

F +
𝜉

2
‖‖V (i,k) − V (i,k−1)‖‖2

F , (16)

where 𝜉 is a positive constant such that 𝜇 ‖‖V (i,k)‖‖∗,ri
+ 𝜉

2
‖‖V (i,k) − V (i,k−1)‖‖2

F is convex. Let

v(i,k)s =

{
0 s = 1, … , ri,

𝜇 s = ri + 1, … ,ni.

Then problem (16) can be written as

min
V (i,k)

∑ni
s=1v(i,k)s 𝜎s

(
V (i,k)) + 1

2
‖‖‖V (i,k)Bk

i −Mk−1
(i)

‖‖‖
2

F
+ 1

2
‖‖V (i,k) −W (i,k)‖‖2

F +
𝜉

2
‖‖V (i,k) − V (i,k−1)‖‖2

F , (17)

where

Bk
i = H(i,k)

(i)

(
V (m,k−1)

⊗ · · ·⊗ V (i+1,k−1)
⊗ V (i−1,k)

⊗ · · ·⊗ V (1,k))T
.

To get a closed-form approximate solution of V (i,k), we linearize the second term of (17) as follows

1
2
‖‖‖V (i,k)Bk

i −Mk−1
(i)

‖‖‖
2

F
≈ 1

2
‖‖‖ ̂V

(i,k)Bk
i −Mk−1

(i)
‖‖‖

2

F
+
⟨
∇V (i)𝓁,V (i,k) − ̂V (i,k)

⟩
+ Lk

i
2
‖‖‖V (i,k) − ̂V (i,k)‖‖‖

2

F
,

(18)

where

̂V (i,k) = V (i,k−1) + 𝜔k
i

(
V (i,k−1) − V (i,k−2))

,

Lk
i =

‖‖‖Bk
i

(
Bk

i

)T‖‖‖2
+ 1, 𝜔

k
i = min

(
�̂�

k
, 0.9999

√
Lk−1

i
Lk

i

)
,

�̂�

k = tk−1−1
tk , t0 = 1, tk = 1

2

(
1 +

√
1 + 4

(
tk−1

)2
)
.

By direct computation, it holds that

∇V (i)𝓁 = ∇V (i)𝓁
(

(i,k)
,V (j<i,k)

,

̂V (i,k)
,V (j>i,k−1)

,
k−1

)

=
(

(i,k) ×1 V (1,k) ×2 · · · ×i ̂V

(i,k) ×i+1 V (i,k−1) ×i+2 · · · ×m V (m,k−1) −k−1
)
(i)
⋅

((

(i,k) ×1 V (1,k) ×2 · · · ×i−1 V (i−1,k) ×i+1 V (i+1,k−1) ×i+2 · · · ×m V (m,k−1))

(i)

)T

=
(
̂V (i,k)Bk

i −Mk−1
(i)

)
⋅
(

Bk
i
)T
.
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Plugging (18) into (17), by Lemma 2, we update factor matrix V (i,k) by

V (i,k) = argmin
V (i,k)

ni∑
s=1

v(i,k)s 𝜎s
(

V (i,k)) +
⟨
∇V (i)𝓁,V (i,k) − ̂V (i,k)

⟩

+
Lk

i

2
‖‖‖V (i,k) − ̂V (i,k)‖‖‖

2

F
+ 1

2
‖‖‖V (i,k) −W (i,k)‖‖‖

2

F
+ 𝜉

2
‖‖‖V (i,k) − V (i,k−1)‖‖‖

2

F

= argmin
V (i,k)

ni∑
s=1

v(i,k)s 𝜎s
(

V (i,k)) + Lk
i + 𝜉 + 1

2

‖‖‖‖‖‖
V (i,k) −

Lk
i
̂V (i,k) − ∇V (i)𝓁 +W (i,k) + 𝜉V (i,k−1)

Lk
i + 𝜉 + 1

‖‖‖‖‖‖

2

F

= S 1
Lk

i +𝜉+1

⎛
⎜⎜⎝

Lk
i
̂V (i,k) − ∇V (i)𝓁 +W (i,k) + 𝜉V (i,k−1)

Lk
i + 𝜉 + 1

, v(i,k)
⎞
⎟⎟⎠
. (19)

Finally, we fix variablesk and V (i,k)
, i ∈ [m], and then tensork is updated by


k = arg min

PΩ(−)=0

1
2𝜇

‖‖‖
k ×1 V (1,k) ×2 · · · ×m V (m,k) −‖‖‖

2

F
= PΩ

(


)
+ PΩc

(


k ×1 V (1,k) ×2 · · · ×m V (m,k))
. (20)

Based on above analysis, our algorithm can be outlined as follows.

Algorithm 1. Low Tucker rank tensor completion (LTRTC)

Input: The tensor data  , the observed set Ω, rank ri, i ∈ [m] and parameters 𝜆, 𝜇, 𝜉.

Initialize:
(

−1
,V (1,−1)

, … ,V (m,−1)) = (


0
,V (1,0)

, … ,V (m,0)).

While not converge do

Let(−1,1) = (0,1) = 0 and(−1,k) = (m−1,k−1)
,

(0,k) = (m,k−1) (k ≥ 2).

For i = 1, … ,m do

Step 1. Compute L(i,k)


and set 𝜔(i,k)


.

Step 2. Let ̂(i,k) = (i−1,k) + 𝜔(i,k)


(

(i−1,k) −(i−2,k)).

Step 3. Update(i,k) according to (13).

Step 4. Update W (i,k) according to (15).

Step 5. Compute Lk
i and set 𝜔k

i .

Step 6. Let ̂V (i,k) = V (i,k−1) + 𝜔k
i

(
V (i,k−1) − V (i,k−2)).

Step 7. Update V (i,k) according to (19).

end

Letk = (m,k).

Updatek according to (20).

k ← k + 1.

end while

Output:
(


k
,V (1,k)

, … ,V (m,k)
,W (1,k)

, … ,W (m,k)
,

k).

4.2 Convergence analysis

Under the LTRTC algorithm framework, we establish the local convergence guarantee of Algorithm 1.

Theorem 2. Suppose that the sequence
{


k
,V (1,k)

, … ,V (m,k)
,W (1,k)

, … ,W (m,k)
, 

k} generated by Algorithm 1 is
bounded. Then any accumulation point of the sequence is a stationary point of problem (9).
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Proof. Since
{


k
,V (1,k)

, … ,V (m,k)
,W (1,k)

, … ,W (m,k)
,

k} is bounded, there exist positive constants Ld, Lu such that
L(i,k)

,Lk

i ∈ [Ld,Lu]. For convenience of notation, let

f
(
,V (1)

, … ,V (m)
,W (1)

, … ,W (m)
,

)
= 𝓁

(
,V (1)

, · · · ,V (m)
,

)

+
m∑

i=1

(
𝜇

‖‖‖V (i)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i)‖‖‖l1

+ 1
2
‖‖‖W (i) − V (i)‖‖‖

2

F

)
+ 𝜇𝜆||||l1 .

For j = 0, 1, … ,m, we further denote

fk =
m∑

i=1

(
𝜇

‖‖‖V (i,k)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k)‖‖‖l1

+ 1
2
‖‖‖W (i,k) − V (i,k)‖‖‖

2

F

)
+ 𝜇𝜆 ‖‖‖

k‖‖‖l1
+ 𝓁

(


k
,V (1,k)

, … ,V (m,k)
,

k)
,

hk+1
j =

j∑
i=1

(
𝜇

‖‖‖V (i,k+1)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k+1)‖‖‖l1

+ 1
2
‖‖‖W (i,k+1) − V (i,k+1)‖‖‖

2

F

)

+
m∑

i=j+1

(
𝜇

‖‖‖V (i,k)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k)‖‖‖l1

+ 1
2
‖‖‖W (i,k) − V (i,k)‖‖‖

2

F

)

+ 𝓁
(

(j,k+1)

,V (1,k+1)
, … ,V (j,k+1)

,V (j+1,k)
, … ,V (m,k)

,
k) + 𝜇𝜆 ‖‖‖

(j,k+1)‖‖‖l1
,

gk+1
j =

j∑
i=1

(
𝜇

‖‖‖V (i,k+1)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k+1)‖‖‖l1

+ 1
2
‖‖‖W (i,k+1) − V (i,k+1)‖‖‖

2

F

)

+
m∑

i=j+1

(
𝜇

‖‖‖V (i,k)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k)‖‖‖l1

+ 1
2
‖‖‖W (i,k) − V (i,k)‖‖‖

2

F

)

+ 𝓁
(

(j+1,k+1)

,V (1,k+1)
, … ,V (j,k+1)

,V (j+1,k)
, … ,V (m,k)

,
k) + 𝜇𝜆 ‖‖‖

(j+1,k+1)‖‖‖l1
,

wk+1
j =

j∑
i=1

(
𝜇

‖‖‖V (i,k+1)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k+1)‖‖‖l1

+ 1
2
‖‖‖W (i,k+1) − V (i,k+1)‖‖‖

2

F

)

+
(
𝜇||V (j+1,k)||∗,ri + 𝜇𝜆

‖‖‖W (j+1,k+1)‖‖‖l1
+ 1

2
‖‖‖W (j+1,k+1) − V (i,k)‖‖‖

2

F

)

+
m∑

i=j+2

(
𝜇

‖‖‖V (i,k)‖‖‖∗,ri
+ 𝜇𝜆 ‖‖‖W (i,k)‖‖‖l1

+ 1
2
‖‖‖W (i,k) − V (i,k)‖‖‖

2

F

)

+ 𝓁
(

(j+1,k+1)

,V (1,k+1)
, … ,V (j,k+1)

,V (j+1,k)
, … ,V (m,k)

,
k) + 𝜇𝜆 ‖‖‖

(j+1,k+1)‖‖‖l1
.

Then

fk−1 − fk = (fk−1 − gk
0) + (g

k
0 − wk

0) + (w
k
0 − hk

1)

+
m−1∑
j=1

(
hk

j − gk
j + gk

j − wk
j + wk

j − hk
j+1

)
+ (hk

m − fk).

Based on Lemma 2.1 in Reference 16 and steps 1–3 of Algorithm 1, we have that for all j = 0, 1, … ,m,

hk
j − gk

j ⩾
L(j+1,k)


2
‖‖‖

(j+1,k) − ̂
(j+1,k)‖‖‖

2

F
+ L(j+1,k)



⟨
̂
(j+1,k) −(j,k)

,
(j+1,k) − ̂

(j+1,k)⟩

=
L(j+1,k)


2
‖‖‖

(j,k) −(j+1,k)‖‖‖
2

F
−

L(j+1,k)


(
𝜔

(j+1,k)


)2

2
‖‖‖

(j−1,k) −(j,k)‖‖‖
2

F

⩾
L(j+1,k)


2
‖‖‖

(j,k) −(j+1,k)‖‖‖
2

F
−

L(j,k)

𝛿

2
𝜔

2
‖‖‖

(j−1,k) −(j,k)‖‖‖
2

F
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and

fk−1 − gk
0 ⩾

L(1,k)


2
‖‖‖

(m,k−1) −(1,k)‖‖‖
2

F
−

L(m,k−1)


𝛿

2
𝜔

2
‖‖‖

(−1,k) −(0,k)‖‖‖
2

F
.

Here 𝛿
𝜔

= 0.9999. Similarly, we have that for all j = 0, 1, … ,m − 1,

wk
j − hk

j+1 ⩾
Lk

j+1

2
‖‖‖V (j+1,k−1) − V (j+1,k)‖‖‖

2

F
−

Lk−1
j+1 𝛿

2
𝜔

2
‖‖‖V (j+1,k−1) − V (j+1,k−2)‖‖‖

2

F
.

Together with the fact that gk
j − wk

j ≥ 0 for all j = 0, 1, … ,m − 1 and hk
m ≥ fk, we have that

fk−1 − fk ⩾
L(1,k)


2
‖‖‖

(m,k−1) −(1,k)‖‖‖
2

F
−

L(m,k−1)


𝛿

2
𝜔

2
‖‖‖

(−1,k) −(0,k)‖‖‖
2

F

+
m−1∑
j=1

(
L(j+1,k)


2
‖‖‖

(j,k) −(j+1,k)‖‖‖
2

F
−

L(j,k)

𝛿

2
𝜔

2
‖‖‖

(j−1,k) −(j,k)‖‖‖
2

F

)

+
m−1∑
j=0

(
Lk

j+1

2
‖‖‖V (j+1,k−1) − V (j+1,k)‖‖‖

2

F
−

Lk−1
j+1 𝛿

2
𝜔

2
‖‖‖V (j+1,k−1) − V (j+1,k−2)‖‖‖

2

F

)

=
L(m,k)


2
‖‖‖

(m−1,k) −(m,k)‖‖‖
2

F
−

L(m,k−1)


𝛿

2
𝜔

2
‖‖‖

(m−1,k−1) −(m,k−1)‖‖‖
2

F
+

m−1∑
j=1

L(j,k)


(
1 − 𝛿2

𝜔

)

2
‖‖‖

(j−1,k) −(j,k)‖‖‖
2

F

+
m∑

j=1

(
Lk

j

2
‖‖‖V (j,k−1) − V (j,k)‖‖‖

2

F
−

Lk−1
j 𝛿

2
𝜔

2
‖‖‖V (j,k−1) − V (j,k−2)‖‖‖

2

F

)
.

Summing up the above inequality over k = 0, 1, … ,K, it gives

f0 − fK ⩾
K∑

k=1

m∑
j=1

(
L(j,k)


(
1 − 𝛿2

𝜔

)

2
‖‖‖

(j−1,k) −(j,k)‖‖‖
2

F
+

Lk
j

(
1 − 𝛿2

𝜔

)

2
‖‖‖V (j,k−1) − V (j,k)‖‖‖

2

F

)

⩾
(
1 − 𝛿2

𝜔

)
Ld

2

K∑
k=1

m∑
j=1

(‖‖‖
(j−1,k) −(j,k)‖‖‖

2

F
+ ‖‖‖V (j,k−1) − V (j,k)‖‖‖

2

F

)
.

Since fk ≥ 0 is lower bounded,
∑∞

k=1(fk − fk+1) = f0 − lim
k→∞

fk is bounded and hence

∞∑
k=1

m∑
j=1

(‖‖‖
(j−1,k) −(j,k)‖‖‖

2

F
+ ‖‖‖V (j,k−1) − V (j,k)‖‖‖

2

F

)
< ∞. (21)

So we can assert that

lim
k→∞

‖‖‖V (i,k) − V (i,k−1)‖‖‖F
= lim

k→∞

‖‖‖
(i−1,k) −(i,k)‖‖‖F

= 0, ∀i ∈ [m].

This means that k −k+1 → 0 when k → ∞. From (15) and the non-expansive property of shrinkage operator T
𝜇𝜆

(⋅),
we have that

lim
k→∞

(
W (i,k) −W (i,k−1)) = 0, i ∈ [m].

Let
{


kj
,V (1,kj)

, … ,V (m,kj)
,W (1,kj)

, … ,W (m,kj)
,

kj
}

be a subsequence converging to
(
,V

(1)
, … ,V

(m)
,W

(1)
, … ,W

(m)
,

)
.

From ‖‖(i−1,k) −(i,k)‖‖F → 0 and ‖‖V (i,k−1) − V (i,k)‖‖F → 0, we have that

̂
(i,kj+1)

, 
(i,kj+1) → , ̂V (i,kj+1)

, V (i,kj+1) → V
(i)
, ∀i ∈ [m].
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From the choosing of(i,kj+1), it follows that

𝜇𝜆𝜕

‖‖‖
(i,kj+1)‖‖‖l1

+ ∇ l
(

(i,kj+1)

,V (1,kj)
, … ,V (m,kj)

)
+ L(i,k)



(

(i,kj+1) − ̂

(i,kj+1)) = 0.

When j →∞, there holds

𝜇𝜆𝜕

‖‖‖
‖‖‖l1
+ ∇ l

(
,V

(1)
, … ,V

(m))
= 0. (22)

By (14), we have

𝜇𝜆𝜕W (i)
‖‖‖W (i,kj+1)‖‖‖l1

+
(

W (i,kj+1) − V (i,kj)
)
= 0.

When j →∞, there holds

𝜇𝜆𝜕W (i)
‖‖‖‖W

(i)‖‖‖‖l1

+
(

W
(i)
− V

(i))
= 0. (23)

By (19), we have

𝜇𝜕V (i)
‖‖‖V (i,kj+1)‖‖‖∗,ri

+ ∇V (i) l
(

(i,kj+1)

,V (1,kj+1)
, … ,V (i,kj+1)

,V (i+1,kj)
, … ,V (m,kj)

)

+ Lkj+1
i

(
̂V (i,kj+1) − V (i,kj+1)

)
+
(

V (i,kj+1) −W (i,kj+1)) + 𝜉 (V (i,kj+1) − V (i,kj)
)
= 0.

When j →∞, there holds

𝜇𝜕V (i)
‖‖‖‖V

(i)‖‖‖‖∗,ri

+ ∇V (i) l
(
,V

(1)
, … ,V

(m))
+
(

V
(i)
−W

(i))
= 0. (24)

By (20), we have


kj+1 = PΩ

(


)
+ PΩc

(


kj ×1 V (1,kj) ×2 · · · ×m V (m,kj)
)
.

When j →∞, there holds

 = PΩ
(


)
+ PΩc

(
 ×1 V

(1)
×2 · · · ×m V

(m))
. (25)

Equalities (22)–(25) give the first-order optimality conditions of (9). That is,
(
,V

(1)
, … ,V

(m)
,W

(1)
, … ,W

(m)
,

)

is a stationary point. ▪

4.3 Improvement with temporal characteristics

In the real world, some characteristics are included in the related tensor data. For example, time stability exists between
two adjacent frames in the video tensor data. So we consider to add || ×i Q(i)||2F to the objective function of (9). Here

Q(i) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0 0
− 0.5 1 −0.5 · · · 0 0

0 −0.5 1 · · · 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 · · · 1 −0.5
0 0 0 · · · −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ni×ni

.
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Motivated by these observations, matrices Q(i) are introduced to characterize the ith characteristics for each i ∈ [m] in the
related tensor data. The temporal constraint matrix Q(i) captures temporal stability feature of the tensor, that is, the data
is similar at adjacent time slots.

Note that

‖‖‖ ×i Q(i)‖‖‖F
= ‖‖‖ ×1 V (1) × · · · ×i

(
Q(i)V (i)) ×i+1 · · · ×m V (m)‖‖‖F

= ‖‖‖
(

Q(i)V (i)) (
 ×1 V (1) × · · · ×i−1 V (i−1) ×i+1 · · · ×m V (m))

(i)
‖‖‖F

≤
‖‖‖Q(i)V (i)‖‖‖F

‖‖‖ ×1 V (1) × · · · ×i−1 V (i−1) ×i+1 · · · ×m V (m)‖‖‖F

≤
‖‖‖Q(i)V (i)‖‖‖F

||||F
∏
j≠i

‖‖‖V (j)‖‖‖F
≤ c ‖‖‖Q(i)V (i)‖‖‖F

||||l1

∏
j≠i

‖‖‖V (j)‖‖‖l1
,

where c is a positive constant depending on || ⋅ ||l1 and || ⋅ ||F . Since ||||l1 and ||V (j)||l1 appear in the objective function, it
suffices to adopt ||Q(i)V (i)||F to measure || ×i Q(i)||F to lower the computational cost. Hence problem (9) can be improved
as follows

min
∑m

i=1

(
𝜇

‖‖V (i)‖‖∗,ri
+ 𝜇𝜆 ‖‖V (i)‖‖l1

+ 𝛽i
2
‖‖Q(i)V (i)‖‖2

F

)
+ 𝜇𝜆||||l1 + 𝓁

(
,V (1)

, … ,V (m)
,

)
,

s.t. PΩ( − ) = 0.
(26)

Let 𝛽i = 0 if there is no additional characterization on the ith slice of . Clearly, model (9) can be regarded as a special
case of model (26). Obviously, , W (i) and  can be updated by (13), (15), and (20), respectively. Hence it suffices to
update V (i,k) for i ∈ [m]. To this end, we consider the following problem

min
V (i,k)

𝜇

‖‖‖V (i,k)‖‖‖∗,ri
+ 𝓁

(

(i,k)
,V (j<i,k)

,V (j≥i,k−1)
,

k−1) + 𝜉

2
‖‖‖V (i,k) − V (i,k−1)‖‖‖

2

F
+ 𝛽i

2
‖‖‖Q(i)V (i,k)‖‖‖

2

F
. (27)

For simplicity, let 𝓁1(,V ,) = 𝓁(,V ,) + 𝛽i
2
‖‖Q(i)V (i)‖‖2

F to update V (i,k). By substituting 𝓁 as 𝓁1 in Algorithm 1,
we have the modified algorithm, denoted by T-LTRTC, similar to LTRTC and hence we omit the details here.

Remark 1. In the experiment, we found that the fixed 𝛽i is not very effective. To improve the efficiency, we update 𝛽i by
𝛽

k
i = max(𝛽0

i 𝜌
k
, 𝜏i), where 𝜌 < 1 and 𝜏i is set to be a given lower bound of 𝛽k

i . So there is k0 so that 𝛽k
i = 𝜏i when k ≥ k0.

5 NUMERICAL EXPERIMENTS

In this section, we adopt the relative error and the peak signal-to-noise ratio (PSNR) as evaluation metrics, defined by

rel. err ∶=
‖‖‖opt − 

‖‖‖F
‖‖‖

‖‖‖F

, PSNR ∶= 10 log10

⎛
⎜⎜⎜⎝

n1 · · ·nm
‖‖‖

‖‖‖
2

∞

‖‖‖ −opt
‖‖‖

2

F

⎞
⎟⎟⎟⎠
.

The algorithm is terminated whenever
‖‖‖‖PΩ

(
opt − 

)‖‖‖‖F
∕ ‖‖‖PΩ()

‖‖‖F
≤ 𝜀 for three iterations in a row. We conduct exten-

sive experiments to evaluate our methods, and then compare them with some existing methods, including TMac,33 NTD,16

and TCTF.40 All the methods are implemented on the platform of Windows 10 and Matlab (R2014a) with an Intel(R)
Core(TM) i7-7700 CPU at 3.60 GHz and 8 GB RAM.

5.1 Numerical simulation

In this subsection, a tensor  ∈ Rn1×n2×n3 is generated randomly with ranktc() = (r, r, r) following Tucker decomposi-
tion.26,36 For this aim, we first generate a core tensor  ∈ Rr×r×r with i.i.d. standard Gaussian entries. Then, we generate
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F I G U R E 1 Comparison on random data with p = 0.5. (a) The tensor size is 100 × 100 × 100. (b) The tensor size is 80 × 60 × 40

matrices U (1)
, U (2)

, U (3), where U (i) ∈ Rni×r with i.i.d. standard Gaussian entries. Next, we set

 ∶=  ×1 U (1) ×2 U (2) ×3 U (3)
.

Finally, we uniformly select pn1 · · ·nm positions of  to construct Ω, where p is the sampling ratio. If the relative error
is smaller than 1e−3,opt is regarded as a successful recovery of  . For each simulation, relative error is obtained via
30 Monte Carlo runs with different realizations of  and Ω. In experiments, we set the maximum iteration steps of all
algorithms to 1000 steps and the termination precision is set to be 1e−6. In NTD and LTRTC, we set the initial Tucker
rank to be (r, r, r) in Figure 1a and (4r, 3r, 2r) in Figure 1b. We set 𝜆 = 0.01, 𝜇 = 0.1, 𝜉 = 1 in LTRTC. For balance, the
nonnegativity of NTD is missing thereafter.

From Figure 1, we can see that as the rank increases, the success ratio of the two proposed algorithms gradually
decreases. However, in the case of the same rank, the success ratio of the LTRTC algorithm is higher than that of the NTD,
and the advantages of LTRTC are clear when the tensor dimensions are larger.

5.2 Image simulation

In this subsection, we apply LTRTC to color image inpainting. Note that color images can be expressed as third-order ten-
sors. When the tensor data is low rank or numerical low rank, the image inpainting problem can be modeled as a low rank
tensor completion problem. As shown in Figure 2, the information of an image example with low rank structure and the
mode-i matrix is controlled by the top 40, 40, and 3 singular values, respectively. Therefore, in NTD, TMac, LTRTC and
T-LTRTC, we set the initial Tucker rank to be (40, 40, 3), and the initial tubal rank is set to be (40, 40, 40) in TCTF. We set𝜆 =
5, 𝜇 = 0.2, 𝜉 = 1 in LTRTC and T-LTRTC, 𝜌 = 0.99, 𝛽i = 25, 𝜏i = 5 for i = 1, 2 and 𝛽3 = 0, 𝜏3 = 0 in T-LTRTC. We con-
sider the case where entries are missing randomly of sampling ratio p = 0.3 and the termination precision is set to be 1e−5.

5.2.1 The Berkeley Segmentation Database

In our test, four pictures of “Airplane”, “Church”, “Woman”, and “Children” are selected.1 The pixels of “Airplane” and
“Churches” are 321 × 481 × 3, and the pixels of “Women” and “Children” are 481 × 321 × 3, respectively. We set the
maximum iteration steps in all algorithms to be 300.

We can see from Figure 3 that TCTF fails to recover the image, the recovered image of NTD and TMac still have visible
reconstruction errors but LTRTC and T-LTRTC can successfully recover the image. The recovered image of T-LTRTC can
be seen to be slightly clear than LTRTC. To compare the recovery effects of the five methods further, we provide the rel.err
and PSNR values for each method in Table 1. It is clear that T-LTRTC achieves the best results.
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F I G U R E 2 (a) Original image. (b) The singular values of mode-1. (c) The singular values of mode-2. (d) The singular values of mode-3

(a) (b) (c) (d) (e) (f) (g)

F I G U R E 3 Completion results of The Berkeley Segmentation Database. Best viewed in ×2 sized color pdf file. (a) Original, (b)
observed, (c) T-LTRTC, (d) LTRTC, (e) NTD, (f) TMac, and (g) TCTF

T A B L E 1 Numerical results for The Berkeley Segmentation Database

Airplane Church Woman Children

Method PSNR rel.err PSNR rel.err PSNR rel.err PSNR rel.err

T-LTRTC 30.3 8.75e−02 35.5 2.46e−02 31.3 7.28e−02 36.9 4.41e−02

LTRTC 28.2 1.12e−01 33.2 3.22e−02 29.4 9.05e−02 34.0 6.18e−02

NTD 25.3 1.56e−01 27.2 6.41e−02 25.6 1.41e−01 28.4 1.17e−01

TMac 25.7 1.48e−01 28.4 5.61e−02 27.7 1.10e−01 25.0 1.72e−01

TCTF 20.6 2.68e−01 22.4 1.11e−01 17.0 3.78e−01 19.8 3.16e−01

Note: The boldface number is the best.
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F I G U R E 4 PSNR and rel.err values with respect to different values of 𝜏 (“Airplane”)
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F I G U R E 5 Completion results of face images. Best viewed in ×2 sized color pdf file. (a) Original, (b) observed, (c) T-LTRTC, (d)
LTRTC, (e) NTD, (f) TMac, and (g) TCTF

To illustrate the performance of T-LTRTC, Figure 4 reports the quantitative metrics against different 𝜏 (𝜏1, 𝜏2). As 𝜏
increases, the effect is getting better and better, but when 𝜏 > 7, the result fluctuates slightly around the optimal value.
This is reasonable since larger 𝜏 captures more temporal stability information. However, pictures have limited temporal
stability information, so the results fluctuate around an optimal value as 𝜏 continues to grow.

5.2.2 California Institute of Technology Color Face Image Library

In our test, we consider two face pictures, each with three scenes, and their pixel size is 592 × 896.2 From Figure 5, we
can see that the face pictures recovered by NTD and TCTF carry a lot of noise, and the pictures recovered by TMac are
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T A B L E 2 Numerical results for face images

Image T-LTRTC LTRTC NTD TMac TCTF

PSNR rel.err PSNR rel.err PSNR rel.err PSNR rel.err PSNR rel.err

Face1 32.4 3.55e−02 29.9 4.72e−02 23.7 9.60e−02 25.9 7.47e−02 23.7 9.66e−02

Face2 32.4 3.53e−02 29.8 4.77e−02 24.2 9.01e−02 25.6 7.70e−02 25.1 8.21e−02

Face3 30.5 4.49e−02 28.2 5.90e−02 22.9 1.08e−01 24.6 8.89e−02 22.5 1.13e−01

Face4 31.8 5.11e−02 30.4 6.01e−02 26.3 9.60e−02 26.0 9.92e−02 25.3 1.08e−01

Face5 30.8 5.85e−02 29.5 6.79e−02 25.9 1.03e−01 25.5 1.08e−01 24.9 1.15e−01

Face6 33.9 2.77e−02 32.4 3.33e−02 23.5 9.26e−02 27.3 5.98e−02 28.6 5.11e−02

Note: The boldface number is the best.

(a) (b) (c) (d) (e) (f) (g)

F I G U R E 6 Completion results of The MRI Volume Dataset. (a) Original, (b) observed, (c) T-LTRTC, (d) LTRTC, (e) NTD, (f) TMac,
and (g) TCTF

not brightly colored. LTRTC recovers face images that are not only low noise but also colorful, and T-LTRTC is slightly
clearer than LTRTC, particularly at face edges. In Table 2, it is clear that T-LTCTR outperforms other methods.

5.3 MRI simulation

The resolution of the MRI volume dataset3 is of size 217 × 181 with 181 slices and we pick the first 100 slices. In NTD,
TMac, LTRTC and T-LTRTC, we set the initial Tucker rank to be (40, 40, 20), and the initial tubal rank is set to be
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F I G U R E 7 Histogram of representation results for the MRI Volume Dataset

(a) (b) (c) (d) (e) (f)

F I G U R E 8 Uniformly sampled video inpainting. (a) Original, (b) observed, (c) T-LTRTC, (d) LTRTC, (e) NTD, and (f) TMac

(40, … , 40) in TCTF. We set 𝜆 = 1, 𝜇 = 0.2, 𝜉 = 1 in LTRTC and T-LTRTC, 𝜌 = 0.99, 𝛽i = 25, 𝜏i = 9 for i = 1, 2 and
𝛽3 = 0, 𝜏i = 0 in T-LTRTC. The maximum iteration steps of all algorithms are set to be 500. The 18th slice and the 88th
slice are displayed in Figure 6. From the recovery results, T-LTRTC outperforms with more details. On the PSNR metric,
T-LTRTC also achieves the best, consistent with the observation in Figure 6. At the same time, we present the resulted
images of the restored images minuend the original pictures. For better visualization, we add 0.5 to the pixel. It is clear
that the images corresponding to T-LTRTC and LTRTC have almost no outline of the original image, indicating the best
recovery effect. From Figure 7, the effect of these five methods can be ordered as T-LTRTC, LTRTC, TMac, NTD, and
TCTF.

5.4 Video simulation

We evaluate our proposed methods LTRTC and T-LTRTC on the widely used YUV Video Sequences.4 Each sequence
contains at least 150 frames and we pick the first 30 frames. In the experiments, we test our proposed methods and other
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T A B L E 3 Numerical results for video inpainting

T-LTRTC LTRTC NTD TMac

Video PSNR rel.err PSNR rel.err PSNR rel.err PSNR rel.err

Suzie 35.1 3.86e−02 34.3 4.26e−02 28.6 8.22e−02 29.3 7.53e−02

News 35.0 4.76e−02 34.6 5.00e−02 26.3 1.30e−01 28.3 1.03e−01

Carphone 32.9 4.80e−02 32.5 5.06e−02 27.4 9.03e−02 28.9 7.60e−02

Note: The boldface number is the best.

(a) (b) (c) (d) (e)

F I G U R E 9 Recovered video of lost frames. From top to bottom, the data of the 8th frame, the 8th–9th frame, the 7th–9th frame, and
the 6th–10th frame are lost. (a) Observed, (b) T-LTRTC, (c) LTRTC, (d) NTD, and (e) TMac

methods on three videos. For each frame, the sizes of the three videos are all of 144 × 176 pixels. In NTD, TMac, LTRTC,
and T-LTRTC, we set the initial Tucker rank to be (30, 30, 3, 5). We set 𝜆 = 1, 𝜇 = 0.2, 𝜉 = 1 in LTRTC and T-LTRTC,
𝜌 = 0.99, 𝛽i = 25, 𝜏i = 1 for i = 1, 2, 𝛽3 = 0, 𝜏3 = 0 and 𝛽4 = 100, 𝜏4 = 10 in T-LTRTC. The maximum iteration steps of
all algorithms are set to be 1000 and the termination precision is set to be 1e−5. We consider the cases where entries are
missing at random of sampling ratio p = 0.1.

In Figure 8, the 18th frame of the three tested videos are presented. For “Suzie” video, there are a lot of noise on face
by NTD and the color of the video cannot be recovered by TMac. For “News” video, there are a lot of noise on the stage
columns and ladies’ clothes by NTD and TMac. For all tested videos, T-LTRTC and LTRTC recover them better than the
others.

From Table 3, it is asserted that the recovery of the four algorithms on videos can be ordered as T-LTRTC, LTRTC,
TMac and NTD. The video inpainting results are consistent with the image inpainting results. All these demonstrate that
our proposed algorithms perform better.
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T A B L E 4 Numerical results for the masked video inpainting

T-LTRTC LTRTC NTD TMac

Lost frame PSNR rel.err PSNR rel.err PSNR rel.err PSNR rel.err

8 59.8 2.27e−03 33.9 4.47e−02 30.1 6.93e−02 26.5 1.04e−01

8–9 55.1 3.88e−03 30.9 6.27e−02 26.6 1.03e−01 23.7 1.45e−01

7–9 50.4 6.64e−03 27.3 9.56e−02 24.3 1.35e−01 21.0 1.97e−01

6–10 35.9 3.55e−02 26.0 1.10e−02 23.3 1.52e−01 19.4 2.37e−01

Note: The boldface number is the best.

In real life, there may be a basic lack of data in a certain frame of the video, and worse, the basic lack of data in several
consecutive frames. In order to check the perform of our proposed algorithms on this situation, we lose the data of the
8th frame, the 8-9th frame, the 7-9th frame, the 6th-10th frame, and we uniformly select 0.1% of the lost data the samples
and other data points without missing frames are known.

From Figure 9 and Table 4, we can see that when only one frame of video data is missing, the T-LTRTC method can
basically recover the missing data completely. However, the recovery effects of LTRTC, NTD, and TMac methods are not
ideal. When several frames of video data are continuously missing, the recovery effect of T-LTRTC is also ideal. Therefore,
our T-LTRTC model has a good effect on the recovery of missing data in continuous time periods.

6 CONCLUSIONS AND FUTURE WORK

In this work, we established a relationship between the Tucker ranks and the ranks of the factor matrices in Tucker
decomposition. Then, we reformulated the low Tucker rank tensor completion problem as a multilinear low rank matrix
completion problem. An SBCD method was proposed for the reformulated problem. Furthermore, temporal charac-
teristics in image and video data were introduced to such a model, which benefits the performance of the method.
The experimental results demonstrated that our proposed models and methods led to impressive improvements over
state-of-the-art methods.

In this work, a multilinear low rank matrix completion model with general sparsity on core tensor and factor matrices
is introduced. However, such sparsity may be over relaxed. Hence, how to choose the sparse measure to fit the problem
is our future focus.
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