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Abstract. In this paper, we present a novel regularization with a truncated

difference of nuclear norm and Frobenius norm of form Lt,∗−αF with an integer
t and parameter α for rank minimization problem. The forward-backward

splitting (FBS) algorithm is proposed to solve such a regularization problem,
whose subproblems are shown to have closed-form solutions. We show that

any accumulation point of the sequence generated by the FBS algorithm is a

first-order stationary point. In the end, the numerical results demonstrate that
the proposed FBS algorithm outperforms the existing methods.

1. Introduction. Rank minimization problems have wide applications in science
and engineering [1, 3, 10]. In this paper, we focus on the following nonconvex
nonsmooth rank minimization problem:

min
X∈Rm×n

r(X) + l(X), (1.1)

where r(X) is the rank of matrix X and l(X) : Rm×n → R has a Lipschitz con-
tinuous gradient with Lipschitz constant Ll. For solving (1.1), plenty of relaxation
models and numerical methods have been proposed in [6, 7, 8, 13, 14, 15, 16, 18, 19].
The well known nuclear norm minimization problem is the most widely used convex
relaxation problem, which is convex and thus computationally tractable. However,
it may sometimes yield suboptimal performance due to the biased approximation
to rank minimization. The reason for this is that nuclear norm is dominated by sin-
gular values with large magnitudes, while singular values make equal contributions
to rank function.

To overcome this drawback, the regularization term Lt,∗−αF is adopted to relax
the rank function such that problem (1.1) is relaxed as

min
X∈Rm×n

L(X) := ‖X‖t,∗−αF + l(X). (1.2)
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Here, “ ∗ ” denotes the nuclear norm and “F” denotes the Frobenius norm. Specif-
ically, given X ∈ Rm×n, t ≤ m ≤ n,

‖X‖t,∗−αF := ‖σ(X)‖t,l1−αl2 =

m∑
i=t+1

σi(X)− α

√√√√ m∑
i=t+1

σ2
i (X), (1.3)

where σ(X) = (σ1(X), · · · , σm(X))T is a vector composed of X’s singular values
with σ1(X) ≥ · · · ≥ σm(X) ≥ 0 and 0 < α ≤ 1 is a given parameter. Clearly,
Lt,∗−αF reduces to L∗−αF when t = 0, i.e., ‖X‖∗−αF := ‖X‖∗ − α‖X‖F , and
Lt,∗−αF reduces to the common used l1 − αl2 when t = 0 and matrix X is addi-
tionally diagonal. For this case, problem (1.2) can be rewritten as the regularized
vector minimization problem in the form of

min
x∈Rq

‖x‖1 − α‖x‖2 + l(x), (1.4)

where q = min(m,n) and ‖x‖p = (
∑q
i=1 |xi|p)1/p for any x ∈ Rq, here p = 1, 2.

Problem (1.4) and its variants have been widely studied for recovering sparse vec-
tor [4, 11, 20]. Efficient minimization algorithms of forward-backward splitting
(FBS) were proposed for finding an approximate solution to (1.4) or its variants.
Recently, a fast approach [11] for minimizing (1.4) was to combine FBS algorithm
with proximal operator, which is particularly useful in convex optimization [17] and
defined as

proxλ,α(y) = arg minx‖x‖1 − α‖x‖2 +
1

2λ
‖x− y‖22. (1.5)

Based on proximal operator, each iteration of forward-backward splitting for solving
(1.4) is expressed as

xk+1 ∈ proxλ,α(xk − λ∇l(xk))
= arg minx‖x‖1 − α‖x‖2 + 1

2λ‖x− (xk − λ∇l(xk))‖22,
(1.6)

where λ > 0 is the stepsize. Such algorithm [11] was shown to be much more
efficient than the methods based on a difference-of-convex approach in the numerical
experiments.

Motivated by these facts, we wonder whether FBS algorithm can be applied to
solve (1.2). For this aim, we consider

Xk+1 = arg minX∈Rm×n‖X‖t,∗ − α‖X‖t,F +
1

2λ
‖X − (Xk − λ∇l(Xk))‖2F . (1.7)

This updating rule is thus referred to as a FBS algorithm. For this updating rule,
two questions arise. One immediate question is whether (1.7) has a closed-form
solution. Another is the performance of the FBS algorithm applied to the low rank
matrix recovery problem.

In this paper, we first propose FBS algorithm for (1.2) with closed-form solutions
to (1.7) and present convergence analysis. We also conduct numerical experiments
to compare the proposed method with SVT [2], FPCA [13] and LMaFit [19]. The
computational results demonstrate the FBS algorithm generally outperforms those
methods.

The outline is as follows. In Section 2, we recall preliminaries that will be used in
this paper. In Section 3, we propose the FBS algorithm for (1.2) and establish the
convergence. Experimental results in Section 4 show advantages of our method over
the state-of-art methods in matrix completion. Finally, conclusions are presented
in Section 5.



2356 HUIYUAN GUO, QUAN YU, XINZHEN ZHANG AND LULU CHENG

2. Preliminaries. In this section, we review some basic definitions. The set of
all n-dimensional nonnegative vectors is denoted by Rn+, that is, x ≥ 0 means
that x ∈ Rn+. Diag(x) or Diag(x1, x2, . . . , xn) denotes a diagonal matrix with ith
diagonal entry xi. Rm×n means the space of m × n matrices, and In means the
space of n× n unitary matrix. Throughout the paper, it is assumed that m ≤ n.

Now we recall notations on matrix norm. For a matrix X ∈ Rm×n, the Frobe-

nius norm of X is denoted by ‖X‖F , namely, ‖X‖F =
√∑m

i=1

∑n
j=1 |xij |2 =√

tr(XXT ), where tr(·) denotes the trace of a matrix. The nuclear norm is de-
fined as ‖X‖∗ :=

∑m
i=1 σi(X) and the p-norm of X is denoted by ‖X‖p, that is,

‖X‖p = (
∑m
i=1 σ

p
i (X))1/p.

Denote

‖X‖t,∗ =

m∑
i=t+1

σi(X), ‖X‖t,F =

√√√√ m∑
i=t+1

σ2
i (X)

and

M(X) = {(U, V ) ∈ Rm×m × Rn×n : UTU = Im, V
TV = In, X = UDiag(σ(X))V T }.

(2.1)

Let X∗ = UDiag(σ(X∗))V T be any singular value decomposition with the ma-
trices partitioned as

U = [U (1), U (2)], V = [V (1), V (2)], (2.2)

with U (1) and V (1) having t columns.
For a given positive integer t and x, y ∈ Rn, we denote

x = (sT , wT )T , s = (x1, . . . , xt)
T , w = (xt+1, . . . , xn)T . (2.3)

Similarly, denote

y = (pT , qT )T , p = (y1, . . . , yt)
T , q = (yt+1, . . . , yn)T . (2.4)

Lemma 1 [11] describes the closed-form solutions of proxλ,α(y). For the reader’s
convenience, we present it here.

Lemma 2.1. Given y ∈ Rn, λ > 0 and α > 0, we have the following statements
about the optimal solution x∗ to the optimization problem in (1.5):

(1) When ‖y‖∞ > λ, x∗ = z(‖z‖2 + αλ)/‖z‖2 for z = S1(y, λ) ∈ Rn. Here,
S1(y, λ) is defined with its entries

(S1(y, λ))i =

 yi − λ yi > λ,
0 |yi| ≤ λ,

yi + λ yi < −λ.
(2.5)

(2) When ‖y‖∞ = λ, x∗ is an optimal solution if and only if it satisfies x∗i = 0
if |yi| < λ, ‖x∗‖2 = αλ and x∗i y

∗
i ≥ 0 for all i. When there are more than one

component having the maximum absolute value λ, the optimal solution is not unique;
in fact, there are infinitely many optimal solutions.

(3) When (1 − α)λ < ‖y‖∞ < λ, x∗ is an optimal solution if and only if it is
a 1-sparse vector satisfying x∗i = 0 if |yi| < ‖y‖∞, ‖x∗‖2 = ‖y‖∞ + (α − 1)λ and
x∗i yi ≥ 0 for all i. The number of optimal solutions is the same as the number of
components having the maximum absolute value ‖y‖∞.

(4) When ‖y‖∞ ≤ (1− α)λ, x∗ = 0.
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To end this section, we present the following assumptions on the loss function l:
Assumption 1. The loss function l : Rm×n → R+ is a smooth function of type
C1,1, i.e., continuously differentiable with Ll-Lipschitz-continuous gradient, that is,

‖∇l(X)−∇l(Y )‖F ≤ Ll‖X − Y ‖F , ∀X,Y ∈ Rm×n. (2.6)

Such Ll > 0 is called Lipschitz constant of ∇l.
Assumption 2. The objective function l(X) is coercive, i.e., l(X)→∞ iff ‖X‖F →
∞.

Throughout this paper, the loss function l(X) is possibly nonconvex.

3. Forward-backward splitting method and its convergence analysis. In
this section, we first introduce a class of first-order stationary points of problem
(1.2). Then we propose a FBS algorithm for solving (1.2). Furthermore, the con-
vergence analysis is established.

Denote Φ(X) = φ(σ(X)). Assume that φ is locally Lipschitz around σ(X), that
is, Φ(X) = φ(σ(X)) is locally Lipschitz on X. It follows from [9, Theorem 3.7] that
the Clarke subdifferential [5] of Φ at X is given by

∂Φ(X) = {UDiag(d)V T : d ∈ ∂φ(σ(X)), (U, V ) ∈M(X)},

where ∂φ is the Clarke subdifferential of φ and M(X) is defined as in (2.1). Then
we have the following definition.

Definition 3.1. Let (U, V ) ∈M(X∗) and U (2), V (2) be defined as in (2.2). Denote
f(w) = ‖w‖1−α‖w‖2 with (2.3) and w∗ := (σt+1(X∗), . . . , σm(X∗))T . Then X∗ is
a critical point if

0 ∈ {∇l(X∗) + U (2)Diag(∂f(w∗))(V (2))T }. (3.1)

Here Diag(∂f(w∗)) ∈ R(m−t)×(n−t).

In the following, we extend the FBS algorithm via proximal operator proposed
in [11] to (1.2) and then establish its convergence. Before proceeding, we need the
closed-form solution for the proximal operator of ‖ · ‖t,l1−αl2 .

By direct computation, together with (2.3) and (2.4), we have

‖x‖t,1 − α‖x‖t,2 +
1

2λ
‖x− y‖2 = ‖w‖1 − α‖w‖2 +

1

2λ
‖w − q‖22 +

1

2λ
‖s− p‖22.

Hence, it follows

(pT , (proxλ,α(q))T )T = arg mins,w‖w‖1−α‖w‖2 +
1

2λ
‖w−q‖22 +

1

2λ
‖s−p‖22. (3.2)

As stated in Lemma 2.1, (proxλ,α(q))T is not unique. In order to find the sparsest

vector, we choose the sparsest one obtained by Lemma 2.1 as (proxλ,α(q))T .
Consider

min
X∈Rm×n

{
〈C,X −B〉+

1

2λ
‖X −B‖2F + ‖X‖t,∗ − α‖X‖t,F

}
(3.3)

for some B,C ∈ Rm×n, λ > 0. We now show that problem (3.3) has a closed-form
solution.

Theorem 3.2. Given B,C ∈ Rm×n, λ > 0, let UDiag(y)V T be the singular value
decomposition of B − λC and x∗ = argminx∈Rn

+

{
‖x‖t,1 − α‖x‖t,2 + 1

2λ‖x− y‖
2
2

}
.

Then X∗ = UDiag(x∗)V T is an optimal solution to problem (3.3).



2358 HUIYUAN GUO, QUAN YU, XINZHEN ZHANG AND LULU CHENG

Proof. By direct computation, (3.3) can be rewritten as

min
X∈Rm×n

{
1

2λ
‖X − (B − λC)‖2F + ‖X‖t,∗ − α‖X‖t,F

}
. (3.4)

Since x∗ = arg minx∈Rn
+

{
‖x‖t,1 − α‖x‖t,2 + 1

2λ‖x− y‖
2
2

}
, X∗ = UDiag(x∗)V T is

an optimal solution to problem (3.4) based on Proposition 2.1 in [12] with F (X) =

‖X‖t,∗−α‖X‖t,F and φ(t) = t2

2λ . Hence X∗ is also an optimal solution of (3.3).

Now we are in the position to present FBS algorithm for solving (1.2) in detail.

Algorithm 3.3. (FBS algorithm)

Input: Function l(·) and parameters λ > 0, α ∈ (0, 1], positive integer t. Let
X0 ∈ Rm×n and k := 0.
while not converge do

Step 1. Compute ∇l(Xk) and Bk := Xk − λ∇l(Xk).
Step 2. Compute UkDiag(yk)(V k)T , which is the singular value decomposi-
tion of Bk.
Step 3. Let xk+1 = ((pk)T , (proxλ,α(qk))T )T by (3.2) with pk := (yk1 , . . . ,

ykt )T and qk := (ykt+1, . . . , y
k
n)T .

Step 4. Update Xk+1 by Xk+1 = UkDiag(xk+1)(V k)T .
Step 5. Let k := k + 1 and go to Step 1.

end while
Output: Xk.

Theorem 3.4. Assume that l(x) satisfies Assumption 1,2 and λ < 1
2Ll

. Let {Xk}
be generated by FBS algorithm and y∗ be an accumulation point of {yk}, where {yk}
is the singular value vector of Xk − λ∇l(Xk). Then

(1) L(Xk) is monotonically decreasing. Indeed, L(Xk+1) − L(Xk) ≤ (Ll − 1
2λ )

‖Xk+1 −Xk‖2F .
(2) The sequence {Xk} is bounded.
(3) lim

k→∞
(Xk −Xk+1) = 0.

(4) Let X∗ be an accumulation point of {Xk}. Then X∗ is a first-order stationary
point of (1.2), i.e., (3.1) holds at X∗.

Proof. (1) Denote F (X) = ‖X‖t,∗−α‖X‖t,F . For some ξk between Xk and Xk+1,
we have

L(Xk+1)− L(Xk) = F (Xk+1)− F (Xk) + l(Xk+1)− l(Xk)
≤ 1

2λ‖λ∇l(X
k)‖2F − 1

2λ‖X
k+1 −Xk + λ∇l(Xk)‖2F + l(Xk+1)− l(Xk)

= l(Xk+1)− l(Xk)− 〈∇l(Xk), Xk+1 −Xk〉 − 1
2λ‖X

k+1 −Xk‖2F
= 〈∇l(ξk), Xk+1 −Xk〉 − 〈∇l(Xk), Xk+1 −Xk〉 − 1

2λ‖X
k+1 −Xk‖2F

= 〈∇l(ξk)−∇l(Xk), Xk+1 −Xk〉 − 1
2λ‖X

k+1 −Xk‖2F
≤ ‖∇l(ξk)−∇l(Xk)‖F ‖Xk+1 −Xk‖F − 1

2λ‖X
k+1 −Xk‖2F

≤ Ll‖Xk+1 −Xk‖2F − 1
2λ‖X

k+1 −Xk‖2F
= (Ll − 1

2λ )‖Xk+1 −Xk‖2F
≤ 0.

(3.5)

The first inequality comes from (1.7), the second one is from Cauchy-Schwarz in-
equality, the third one is due to Assumption 1 and the last inequality comes from
λ < 1

2Ll
. Hence, (1) is asserted.
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(2) From (1), L(Xk) is bounded above. Since ‖X‖∗ ≥ ‖X‖F ≥ α‖X‖F , F (X) ≥
0, which implies that L(X) = F (X) + l(X) ≥ l(X). So we can assert that l(Xk) is
bounded above. From Assumption 2, we have the boundness of {Xk}.

(3) By summing inequalities in (3.5), there holds

(
1

2λ
− Ll)

∞∑
k=1

‖Xk+1 −Xk‖2F ≤ L(X1)− lim
k→∞

L(Xk) <∞.

The last inequality is due to the fact that {Xk} is bounded from result (2). Thus
lim
k→∞

(Xk −Xk+1) = 0.

(4) Let Bk = Xk − λ∇l(Xk), UkDiag(yk)(V k)T be the singular value decompo-
sition of Bk. Let xk+1 and Xk+1 be as in Step 3 and Step 4. Then

Xk+1 −Xk = Xk+1 −Bk +Bk −Xk

= UkDiag(xk+1 − yk)(V k)T + (Xk − λ∇l(Xk))−Xk

= UkDiag(xk+1 − yk)(V k)T − λ∇l(Xk)
= U (2,k)Diag(proxλ,α(qk)− qk)(V (2,k))T − λ∇l(Xk),

where the last equality comes from (3.2).
Since proxλ,α(qk) = arg minx ‖x‖1 − α‖x‖2 + 1

2λ‖x− q
k‖2, it holds

∂f(proxλ,α(qk)) +
1

λ
(proxλ,α(qk)− qk) = 0,

which leads to proxλ,α(qk) − qk = −λ∂f(proxλ,α(qk)). Now we can assert that

U (2,k)∂f(proxλ,α(qk))(V (2,k))T −∇l(Xk)→ 0 since ‖Xk+1 −Xk‖F → 0.

Denote K is an index set such that {Xk}K → X∗. Without loss of generality,
it is assumed that {U (k)}K → U∗, {V (k)}K → V ∗ and {xk}K → x∗. Then X∗ =
U∗Diag(x∗)(V ∗)T . Hence U (2,∗)Diag(∂f(proxλ,α(q∗)))(V (2,∗))T − ∇l(X∗) = 0,
which means that X∗ is a first-order stationary point.

4. Numerical results. In this section, we conduct numerical experiments to test
the performance of the FBS algorithm. In particular, we apply it to solve the
problem (1.2) with l(X) = θ ‖PΩ(X −M)‖2F , that is,

min
X∈Rm×n

L(X) := ‖X‖t,∗ − α‖X‖t,F + θ ‖PΩ(X −M)‖2F . (4.1)

Here M ∈ Rm×n, Ω is an index set which locates the observed data, PΩ is a linear
operator that extracts the entries in Ω and fills the entries not in Ω with zeros.
We conduct extensive experiments to evaluate our method and then compare it
with some existing methods, including SVT [2], FPCA [13] and LMaFit [19]. The
platform is Matlab R2014a under Windows 10 on a desktop of a 3.6GHz CPU and
8GB memory. We adopt the relative error as evaluation metrics

rel.err :=
‖X∗ −M‖F
‖M‖F

.

4.1. Numerical simulation. In this subsection, we aim to recover a random ma-
trix M ∈ Rm×n with rank r based on a subset of entries {Mij}(i,j)∈Ω. In detail, we

first generate random matrices ML = rand(m, r) ∈ Rm×r and MR = rand(n, r) ∈
Rn×r, then let M = MLM

T
R . We then sample a subset with sampling ratio p uni-

formly at random, where p = |Ω|/(mn). In our experiment, we set m = n = 200
and p = 0.5. For each sample ratio p and rank r, we apply FBS, FPCA, LMaFit
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and SVT to solve (4.1) on 30 instances that are randomly generated as above. In
particular, we set 1000 as the maximum of iterative numbers and tol = 1e − 6 for
all algorithms. In addition, we set τ = 5

√
mn and δ = 1.2/p for SVT and the initial

rank K = b1.5rc for LMaFit. We set α(k) = 1
1+e−0.02k , θ = 0.9/λ and t = 1 for

FBS.
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Figure 1. Comparison of random data with p = 0.5.

From Figure 1, we can see that as the rank increases, the recovery rate of the four
algorithms gradually decreases and the required running time gradually increases.
More specifically, it can be seen from Figure 1(A) that no matter what the rank is,
LMaFit cannot recover the matrix; when the rank reaches 20, FPCA fails; when
the rank reaches 30, SVT fails; when the rank is 30, FBS has a 60% chance of
recovering the matrix. Furthermore, Figure 1(B) shows that the running time of
FBS is always less than 25s, which is not much different from the minimum running
time. As the rank increases, the running time of SVT increases dramatically. In
summary, the FBS algorithm is the best one for matrix completion.

4.2. Image simulation. Note that a grayscale image can be expressed by a ma-
trix. The grayscale image inpainting problem can be modeled as matrix completion
problem when the matrix data is of low rank or numerically low rank.

In this subsection, we apply FBS, FPCA, LMaFit and SVT to solve a grayscale
image inpainting problem. We use the USC-SIPI image database1 to evaluate our
proposed algorithm with t = 50 for image inpainting. We randomly select a picture
from it and plot the singular values of the picture. Figure 2 shows that the matrix
corresponding to the picture is numerically low rank. In our test, we randomly
select 4 images from this database and test them with entries missed randomly by
sampling ratio p = 0.6.

In general, there is no drastic changes in the image data between two adjacent
rows and two adjacent columns. To study such stability, we calculate the data pairs
of two adjacent rows and two adjacent columns. We measure the stability between
two adjacent rows of the images at the ith row as

∆row(i, j) =
|Mij −M(i+1)j |

max
1≤i≤m−1

|Mij −M(i+1)j |
,

1http://sipi.usc.edu/database/
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(a) A 512× 512 image example.
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(b) The singular values of image.

Figure 2. As can be seen, the distribution of the singular values
has a fast decaying distribution, and the information is dominated
by the top 50 singular values.

where max
1≤i≤m−1

|Mij−M(i+1)j | is the maximal gap between any two adjacent rows in

the image data. We plot the Cumulative Distribution Function (CDF) of ∆row(i, j)
for Male image in Figure 3(A). The X-axis represents the normalized difference
values between two adjacent rows slots, i.e., ∆row(i, j). The Y-axis represents the
cumulative probability. Similarly, we plot the CDF of ∆col(i, j) for Male image in
Figure 3(B). We can see that both ∆row(i, j) < 0.8 and ∆col(i, j) < 0.8 are more
than 80%. Based on the above analysis, for the restoration of images, we let

l(X) = θ ‖PΩ(X −M)‖2F + β
(∥∥LTX∥∥2

F
+ ‖XR‖2F

)
,

where L and R are m× (m− 1) and n× (n− 1) Toeplitz matrices, respectively. We
call this algorithm FBS-TM.
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Figure 3. An empirical study of Male images data.

In order to compare the performance of FBS, FBS(t = 0), FBS-TM and FBS-
TM(t = 0), we select the picture of Airplane and set sampling ratio p from 0.1
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to 0.9 with increment 0.1. In particular, we set 1000 as the maximum iterative
number and tol = 5e − 5 for all methods. Figure 4 reports the rel.err value and
running time of such algorithms. We can see that truncated FBS-TM and FBS
are superior to FBS-TM(t = 0) and FBS(t = 0) in rel.err value regardless of the
sample rate, which indicates that the truncated norm is meaningful. We can also
see that regardless of the sample rate, FBS-TM and FBS-TM(t = 0) are superior
to FBS and FBS(t = 0) in rel.err value, respectively. It explains that the model
based on stability is also helpful.
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Figure 4. Comparison of the four algorithms with different sam-
pling ratio p.

Table 1. Numerical results of different images

Method
Clock Male Pixel ruler Walter Cronkite

rel.err time rel.err time rel.err time rel.err time

FBS-TM 2.96e-02 5.47 4.63e-02 40.28 4.31e-02 9.66 1.77e-02 7.62
LMaFit 7.95e-02 0.05 1.74e-01 0.16 8.74e-02 1.43 1.27e-01 0.05
SVT 4.93e-02 19.05 1.02e-01 39.51 3.09e-01 45.64 7.23e-02 19.39
FPCA 7.60e-02 2.82 1.36e-01 14.69 1.30e-01 14.69 8.29e-02 2.94

Figure 5 shows that FBS-TM is the best one to inpaint image, while images
recovered by another three algorithms are not clear. Table 1 presents the numerical
results, which indicates that FBS-TM is the best one.

For further comparison, we also recover images of the deterministically masked
images by boat and airplane respectively. Clearly, the masked images are no-mean-
sampling. The results are displayed in Figure 6 and Table 2, where t = 60 in our
proposed algorithm. Figure 6 indicates that FBS-TM has the best performance.

4.3. MRI volume dataset. The resolution of the MRI volume dataset2 is of size
217×181 with 181 slices and we pick the first 100 ones. We consider the case where
entries are missing at random with sampling ratio p = 0.8. From Figure 7, it is
asserted that in the restoration of all 100 frames of pictures, the restoration effect

2http://www.bic.mni.mcgill.ca/ServicesBrainWeb/HomePage

http://www.bic.mni.mcgill.ca/ServicesBrainWeb/HomePage
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(a) Original (b) Observation (c) FBS-TM (d) LMaFit (e) SVT (f) FPCA

Figure 5. Testing images. “Clock”: grayscale image of 256× 256
pixels. “Male”: grayscale image of 512× 512 pixels. “Pixel ruler”:
grayscale image of 512× 512 pixels. “Walter Cronkite”: grayscale
image of 256× 256 pixels.

(a) Original (b) Observation (c) FBS-TM (d) LMaFit (e) SVT (f) FPCA

Figure 6. Recovered images of the masked images.

Table 2. Numerical results of masked images.

FBS-TM LMaFit SVT FPCA

rel.err time rel.err time rel.err time rel.err time

2.95e-02 25.45 1.43e-01 0.49 1.70e-01 11.26 7.26e-01 16.51
1.50e-02 25.10 1.12e-01 0.26 3.04e-02 52.21 5.35e-01 15.43
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based on our proposed algorithm with t = 50 is far better than another three ones.
Moreover, we also present the difference of the restored pictures and the original
ones by various algorithms. For better visualization, we add 0.5 to the pixel. It is
clear that the pictures obtained by FBS-TM have almost no outliers, indicating the
best performance.
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Figure 7. Comparison of four algorithms for the first 100 frames.
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(a) Original (b) Observation (c) FBS-TM (d) LMaFit (e) SVT (f) FPCA

Figure 8. Comparison results of the MRI volume dataset.

5. Conclusions. In this paper, we considered the Lt,∗−αF regularization. We pro-
posed the FBS algorithm. The computational results demonstrated that the FBS
algorithm generally outperformed those algorithms.

Besides the Lt,∗−αF , the truncated norm regularizer, there are some other pop-
ular nonconvex regularizers for producing a sparse solution of a system or a sparse
minimization problem, which may be extended to low rank matrix minimization. In
this paper, we studied Lt,∗−αF regularized low rank matrix minimization problems.
An open question is whether we can follow this way with other regularizers for the
low rank matrix minimization problems. This will be our future work.
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