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Abstract
In this paper, we study the low-rank matrix minimization problem, where the loss 
function is convex but nonsmooth and the penalty term is defined by the cardinality 
function. We first introduce an exact continuous relaxation, that is, both problems 
have the same minimizers and the same optimal value. In particular, we introduce a 
class of lifted stationary points of the relaxed problem and show that any local mini-
mizer of the relaxed problem must be a lifted stationary point. In addition, we derive 
lower bound property for the nonzero singular values of the lifted stationary point 
and hence also of the local minimizers of the relaxed problem. Then the smoothing 
proximal gradient (SPG) algorithm is proposed to find a lifted stationary point of the 
continuous relaxation model. Moreover, it is shown that any accumulating point of 
the sequence generated by SPG algorithm is a lifted stationary point. At last, numer-
ical examples show the efficiency of the SPG algorithm.

Keywords Low-rank approximation · Nonsmooth convex loss function · Smoothing 
method

Mathematics Subject Classification 15A03 · 15A83 · 90C30 · 65K05

1 Introduction

Over the last decade, finding a low-rank matrix solution to a system or low-rank 
matrix optimization problem has received more and more attention. Numerous 
optimization models and methods have been proposed in [9–10, 17, 19, 24]. In this 
paper, we consider the matrix rank minimization problem of form
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where X ∈ ℝm×n (n ≤ m) , ‖z‖0 counts the number of nonzero elements of z, and 
�(X) ∶=

(
�1(X),… , �n(X)

)T with �1(X) ≥ … ≥ �n(X) ≥ 0 being singular values of 
matrix X. Furthermore, f ∶ ℝm×n → [0,+∞) is convex (not necessarily smooth) and 
� is a positive parameter.

One application of problem (1.1) is the low-rank matrix recovery problem [12, 
13, 16, 18, 23, 25]. To solve such problem, traditional algorithms are always based 
on l2 (or Frobenius)-nuclear model, that is, the loss function is a l2-norm for vector 
case or Frobenius norm for matrix case, and rank(X) is relaxed as a matrix nuclear 
norm. However, these models are sensitive to non-Gaussian noise with outliers [11, 
28–29]. To overcome this drawback, the l1 model is considered in the problem with 
the outlier-resistant loss function. For example, the following loss function is con-
sidered in the low-rank matrix recovery problem

where the linear map A ∶ ℝm×n → ℝp , vector b ∈ ℝp are given, and ‖z‖1 denotes 
the l1 norm of z. Obviously, f is convex but not smooth. For simplicity, we denote 
‖Z‖1 ∶= ‖vec(Z)‖1 , where vec(Z) is the vectorization operation of a matrix Z. Based 
on this notation, the low-rank matrix completion problem, a special case of low-rank 
matrix recovery problem, the corresponding loss function f(X) can be written as

where M ∈ ℝm×n is a known matrix, Ω is an index set which locates the observed 
data, PΩ is a linear operator that extracts the entries in Ω and fills the entries not in 
Ω with zeros. In the robust principal component analysis (RPCA) problem [2, 6, 22, 
26], the loss function f(X) is adopted as

where L ∈ ℝm×n denotes the observed data. The RPCA problem aims to 
decompose the matrix L as the sum of a low-rank matrix X and a sparse matrix 
E = L − X ∈ ℝm×n.

It is known that matrix rank function is nonconvex and nonsmooth. In the matrix 
rank minimization problem, one of the most common used convex relaxations of 
rank function is matrix nuclear norm. Although the methods based nuclear norm 
relaxation have strong theoretical guarantees, the obtained approximation solutions 
under certain incoherence assumptions are usually hard to satisfy in real applica-
tions [4, 5]. In other words, the nuclear norm is not a perfect approximation to the 
rank function.

In [1], the capped l1 function, a continuous relaxation of l0 function, was adopted 
in penalized sparse regression problem with some advantages. Furthermore, a 
smoothing proximal gradient (SPG) algorithm with global convergence was pro-
posed there. More recently, such technique was applied to group sparse optimization 
for images recovery in [21]. It is well-known that the matrix norm can be expressed 
as a vector norm of the singular value vector. Motivated by these, we consider 

(1.1)minFl0
(X) ∶= f (X) + � ⋅ rank(X) = f (X) + �‖�(X)‖0,

(1.2)f (X) = ‖A(X) − b‖1,

f (X) = ‖PΩ(X −M)‖1,

(1.3)f (X) = ‖L − X‖1,
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whether such SPG algorithm can be generalized from sparse regression problem to 
low-rank matrix minimization or not.

For this aim, let Φ(X) =
∑n

i=1
�
�
�i(X)

�
 be a continuous relaxation of the rank 

function with the capped �1 function � given by

where 𝜈 > 0 is a parameter. By direct computation, Φ(X) ≤ rank(X). Based on Φ(X) , 
we consider the following continuous optimization problem for solving (1.1):

In this paper, we consider a continuous relaxation of rank function to solve the 
matrix rank minimization problem. Similar to [1], our method is also based upon the 
SPG algorithm. From [1], the convexity of those two relaxed functions is essential to 
show the global convergence and local convergence rate. However, such convexity 
does not hold for matrix case, shown in Sect. 2. Hence it is not trivial to extend SPG 
algorithm from vector case to matrix case.

Our contributions are as follows. We first present a continuous relaxation prob-
lem (1.5) of problem (1.1), which are shown to have the same global optimizers. 
Furthermore, the local minimizers of (1.5) is a lifted stationary point of (1.5) with 
an expected lower bound property of singular values. Then an SPG algorithm is pro-
posed to get a lifted stationary point of (1.5). Moreover, it is shown that any accu-
mulating point of the sequence generated by SPG algorithm is a lifted stationary 
point.

Notations. We denote [n] = {1, 2,… , n} and 𝔻n =
{
d ∈ ℝn ∶ di ∈ {1, 2}, i ∈ [n]

}
. 

The space of m × n matrices is denoted by ℝm×n . For a given matrix X ∈ ℝm×n , ��(X) 
denotes the open ball centered at X with radius � . In addition, D(x) denotes a diago-
nal matrix generated by vector x, whose dimension shall be clear from the context. 
Denote ℚm the set of (m × m)-dimension unitary orthogonal matrix. Let Ei = D(ei) , 
where ei is a unit vector whose ith entry is 1.

For any given X, Y ∈ ℝm×n , the standard inner product of X and Y is denoted by 
⟨X, Y⟩ , that is, ⟨X, Y⟩ = tr

�
XYT

�
 , where tr(⋅) denotes the trace of a matrix. The Frobe-

nius norm of X is denoted by ‖X‖F, namely, ‖X‖F =

�
tr
�
XXT

�
 . Denote 

�(X) =
(
�1(X),… , �n(X)

)T and

2  An exact continuous relaxation for (1.1)

In this section, we present some relationships between (1.1) and (1.5). Without spe-
cific explanation, Assumptions 1 and 2 are assumed throughout the paper.

Assumption 1. f is Lipschitz continuous with Lipschitz constant Lf .
Assumption 2. Positive parameter � in (1.4) satisfies 𝜈 < �̄� ∶= 𝜆∕Lf .

(1.4)�(t) = min{1, t∕�}, t ≥ 0,

(1.5)minF(X) ∶= f (X) + �Φ(X).

M(X) =
{
(U,V) ∈ ℚ

m ×ℚ
n ∶ X = UD(�(X))VT

}
.
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2.1  Lifted stationary points of (1.5)

Clearly, � in (1.4) can be rewritten as a DC function, i.e.,

with �1(t) = 0 and �2(t) = t∕� − 1 . Denote

Following Theorem 3.7 in [14], the Clarke subdifferential of Φ at X is given by

where ��(x) is the Clarke subdifferential [7] of �(x) . Then we have the following 
definition.

Definition 2.1 We say that X is a lifted stationary point of (1.5) if there exist 
di ∈ D

(
�i(X)

)
 for all i ∈ [n] such that

where �i(X) is the ith largest singular value of X.
If (2.2) holds for all di ∈ D

(
�i(X)

)
, i ∈ [n] , then we call X a d-stationary point.

2.2  Characterizations of lifted stationary points of (1.5)

We first show that D
(
𝜎i(X̄)

)
 for a lifted stationary point X̄ is unique.

Proposition 2.2 If X̄ is a lifted stationary point of (1.5), then the vector 
dX̄ =

�
dX̄
1
,… , dX̄

n

�T

∈
∏n

i=1
D
�
𝜎i(X̄)

�
 satisfying (2.2) is unique. In particular, for 

i ∈ [n],

Proof For case of 𝜎i(X̄) ≠ 𝜈, the statement in this proposition follows. Hence, it suf-
fices to consider the index i satisfying 𝜎i(X̄) = 𝜈.

Now we assume that dX̄
i
= 1 by contradiction when 𝜎i(X̄) = 𝜈 . By (2.2), there 

exists 𝜉(X̄) ∈ 𝜕f (X̄) such that 0 =
(
ŪT𝜉(X̄)V̄

)
ii
+ 𝜆∕𝜈 , where (Ū, V̄) ∈ M

(
X̄
)
 . Then, 

�(t) =
t

�
−max

{
�1(t), �2(t)

}

(2.1)D(t) =
{
i ∈ {1, 2} ∶ �i(t) = max

{
�1(t), �2(t)

}}
.

�Φ(X) =

{
UD(x)VT ∶ x ∈ �

n∑

i=1

�
(
�i(X)

)
, (U,V) ∈ M(X)

}
,

(2.2)

�

n�

i=1

��
di

�
�i(X)

�
Ei ∈

�
UT�f (X)V +

�

�
D
�
�‖�(X)‖1

�
∶ (U,V) ∈ M(X)

�
,

(2.3)dX̄
i
=

{
1 if 𝜎i(X̄) < 𝜈,

2 if 𝜎i(X̄) ≥ 𝜈.
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𝜆∕𝜈 =
|||
(
ŪT𝜉(X̄)V̄

)
ii

||| ≤
‖‖ŪT𝜉(X̄)V̄‖‖F = ‖‖𝜉(X̄)‖‖F ≤ Lf  . This leads to a contradiction 

to 𝜈 < 𝜆∕Lf  . Then, we can assert that dX̄
i
= 2 , and hence (2.3) holds for 𝜎i(X̄) = 𝜈.

For a given d =
(
d1,… , dn

)T
∈ �n, we define

It is easy to see that

Furthermore, for a fixed X̄, Φ(X̄) = ΦdX̄ (X̄) with dX̄ defined in (2.3). We next show 
that any local minimizer of (1.5) is a lifted stationary point of the problem.

Theorem 2.3 Suppose that X̄ is a local minimizer of problem (1.5). Then X̄ is a lifted 
stationary point of (1.5), that is, (2.2) holds at X̄.

Proof Since X̄ is a local minimizer of (1.5), it gives

where the first equality comes from ΦdX̄ (X̄) = Φ(X̄) , dX̄ is defined as in (2.3) and the 
last inequality is due to ΦdX̄ (X) ≥ Φ(X), ∀X ∈ ℝm×n . Then X̄ is a local minimizer of 
the problem

Hence, there exists some (Ū, V̄) ∈ M
(
X̄
)
 such that

which implies (2.2) at X̄.

To end this subsection, we present a lower bound property of the lifted stationary 
points of (1.5), which is similar to Lemma 2.3 in [1]. For the ease of the reader, we 
present the proof here.

Lemma 2.4 If X̄ is a lifted stationary point of (1.5), then it holds that

Proof Suppose X̄ is a lifted stationary point of (1.5). Assume that 𝜎i(X̄) ∈ (0, 𝜈) for 
some i ∈ [n]. Then, dX̄

i
= 1 . By Definition 2.1, there exists 𝜉(X̄) ∈ 𝜕f (X̄) such that 

(2.4)Φd(X) ∶=

n∑

i=1

�i(X)∕� −

n∑

i=1

�di

(
�i(X)

)
.

Φ(X) = min
d∈𝔻n

Φd(X), ∀X ∈ ℝ
m×n.

(2.5)
f (X̄) + 𝜆ΦdX̄

(
X̄
)
= f (X̄) + 𝜆Φ

(
X̄
)

≤ f (X) + 𝜆Φ(X) ≤ f (X) + 𝜆ΦdX̄ (X), ∀X ∈ �𝜚(X̄),

(2.6)min
X

f (X) + 𝜆ΦdX̄ (X).

(2.7)0 ∈ 𝜕f
(
X̄
)
+ 𝜆Ū

(
1

𝜈
D
(
𝜕‖‖𝜎(X̄)‖‖1

)
−

n∑

i=1

𝜃�
dX̄
i

(
𝜎i(X̄)

)
Ei

)
V̄T ,

(2.8)𝜎i(X̄) ∈ [0, 𝜈) ⇒ 𝜎i(X̄) = 0, i ∈ [n].
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0 =
(
ŪT𝜉(X̄)V̄

)
ii
+ 𝜆∕𝜈 , where (Ū, V̄) ∈ M

(
X̄
)
 . Then, 

𝜆∕𝜈 =
|||
(
ŪT𝜉(X̄)V̄

)
ii

||| ≤
‖‖ŪT𝜉(X̄)V̄‖‖F = ‖‖𝜉(X̄)‖‖F ≤ Lf , which leads to a contradic-

tion to 𝜈 < 𝜆∕Lf  . Thus, for any i ∈ [n], 𝜎i(X̄) ∈ [0, 𝜈) implies that 𝜎i(X̄) = 0.

2.3  Relationships between (1.1) and (1.5)

This subsection presents some relationships between problem (1.1) and its continu-
ous relaxation (1.5). According to the lower bound property of the lifted stationary 
points of (1.5) obtained in Lemma 2.4, we are ready to link (1.1) and (1.5) in the fol-
lowing two results. The first result deals with the global minimizers of two problems 
and the second one with their local minimizers.

Theorem 2.5 X̄ is a global minimizer of (1.1) if and only if it is a global minimizer of 
(1.5). Moreover, problems (1.1) and (1.5) have the same optimal value.

Proof Let X̄ be a global minimizer of (1.5), then X̄ is a lifted stationary point of 
(1.5) from Theorem 2.3. By (2.8), it follows Φ(X̄) = ‖𝜎(X̄)‖0 . Then,

where the last inequality comes from Φ(X) ≤ ‖�(X)‖0, ∀X ∈ ℝm×n . Thus, X̄ is a 
global minimizer of (1.1).

Next, suppose X̄ is a global minimizer of (1.1) but not a global minimizer of 
(1.5). Assume that X̂ is a global minimizer of (1.5) satisfying

As shown earlier, Φ(X̂) = ‖𝜎(X̂)‖0 . Together with Φ(X̄) ≤ ‖𝜎(X̄)‖0 , we have 
f (X̂) + 𝜆‖𝜎(X̂)‖0 < f (X̄) + 𝜆‖𝜎(X̄)‖0, which leads to a contradiction. Thus, any 
global minimizer of (1.1) must be a global minimizer of (1.5).

The same optimal value is clear from above.

Theorem 2.5 ensures that problems (1.1) and (1.5) have the same optimal value. 
The following result will show the relationship between the local minimizers of 
problems (1.1) and those of (1.5).

Proposition 2.6 If X̄ is a local minimizer of (1.5), then it is a local minimizer of 
(1.1), and the objective functions of (1.1) and (1.5) have the same value at X̄, i.e., 
F

�0
(X̄) = F(X̄).

The proof is similar to the first part of Theorem 2.5 and hence we omit it here.
Note that the convexity of Φd(⋅) for any given d is essential for further relation-

ships between the stationary point (2.2) and (1.5) as in Fig. 1 in [1]. However, the 

f (X̄) + 𝜆‖𝜎(X̄)‖0 = f (X̄) + 𝜆Φ(X̄)

≤ f (X) + 𝜆Φ(X)

≤ f (X) + 𝜆‖𝜎(X)‖0,

f (X̂) + 𝜆Φ(X̂) < f (X̄) + 𝜆Φ(X̄).
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following counterexample illustrates the non-convexity of Φd(X) , and hence no fur-
ther relationships in [1] can be established.

Example 2.7 Let d = (2, 1)T and X = [1, 0;0, 0] , Y = [0, 0;0, 2] . Then for any 
0 < 𝜆 < 1, it follows

Hence, it is asserted that Φd(X) for such d is not convex.

To end this subsection, we present Fig. 1 to summarize the relationships between 
problems (1.1) and (1.5).

3  Numerical algorithm and its convergence analysis

In this section, we are ready to propose a numerical algorithm to find a lifted sta-
tionary point of (1.5). For this aim, we first introduce some preliminary results on 
smoothing methods and the proximal gradient algorithm, then we propose a proxi-
mal gradient algorithm based on the smoothing method. After that we establish the 
convergence of the proposed algorithm.

3.1  Smoothing approximation method and proximal gradient method

Smoothing approximation method is a common used numerical method for nons-
mooth optimization problems. For more details, see [20] and references therein. We 
first recall a class of smoothing functions for f(X) in (1.5).

Definition 3.1 We call f̃ ∶ ℝm×n × [0, �̄�] → ℝ with �̄� > 0 a smoothing function of 
the convex function f in (1.5), if f̃ (⋅,𝜇) is continuously differentiable in ℝm×n for any 
fixed 𝜇 > 0 and satisfies the following conditions: 

(i) lim
X→X̄,𝜇↓0

f̃ (X,𝜇) = f (X̄), ∀X̄ ∈ ℝm×n;

Φd(𝜆X + (1 − 𝜆)Y) = 1 +
1

𝜈
min{𝜆, 2(1 − 𝜆)} > 𝜆Φd(X) + (1 − 𝜆)Φd(Y) = 1.

Fig. 1  Relationships between problems (1.1) and (1.5)
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(ii) (convexity) f̃ (X,𝜇) is convex with respect to X for any fixed 𝜇 > 0;

(iii) (gradient consistency) 
{

lim
Z→X,𝜇↓0

∇Z f̃ (Z,𝜇)

}
⊆ 𝜕f (X), ∀X ∈ ℝm×n;

(iv) ( f̃ (X, ⋅) Lipschitz continuity with respect to � ) there exists a positive constant � 
such that 

(v) (∇Xf̃ (⋅,𝜇) Lipschitz continuity with respect to X) there exists a constant L > 0 
such that for any 𝜇 ∈ (0, �̄�] , ∇Xf̃ (⋅,𝜇) is Lipschitz continuous with Lipschitz 
constant L�−1.

Let f̃ (X,𝜇) be a smoothing function of f(X) in (1.5). For convenience of notation, 
the gradient of f̃ (X,𝜇) with respect to X is denoted as ∇f̃ (X,𝜇) . Furthermore, Defi-
nition 3.1-(iv) indicates that

Some smoothing functions of the l1 loss function in (1.2) can be found in Example 
3.1 of [1] and we omit it here for simplicity.

Some notations are listed as follows

where f̃  is a smoothing function of f, 𝜇 > 0 and d ∈ �n . For any fixed 𝜇 > 0 and 
d ∈ �n , both F̃d

(X,𝜇) and F̃(X,𝜇) are nonconvex, which are different from the vec-
tor case considered in [1]. Moreover,

Next we are ready to recall some preliminaries on proximal gradient method.
Similar to the analysis in Subsection 3.2 of [1], we have a closed-form solution to 

proximal operator of �Φd as follows.

Lemma 3.2 For any given vectors d ∈ 𝔻n, w ∈ ℝn
+
 , and a positive number 𝜏 > 0, 

the proximal operator of prox�Φd (w) has a closed-form solution, i.e.,

can be calculated by

where

|||f̃
(
X,𝜇2

)
− f̃

(
X,𝜇1

)||| ≤ 𝜂||𝜇1 − 𝜇2
||, ∀X ∈ ℝ

m×n, 𝜇1,𝜇2 ∈ [0, �̄�];

(3.9)|f̃ (X,𝜇) − f (X)| ≤ 𝜂𝜇, ∀X ∈ ℝ
m×n, 0 < 𝜇 ≤ �̄�.

F̃
d
(X,𝜇) ≜ f̃ (X,𝜇) + 𝜆Φd(X) and F̃(X,𝜇) ≜ f̃ (X,𝜇) + 𝜆Φ(X),

(3.10)F̃
d
(X,𝜇) ≥ F̃(X,𝜇), ∀d ∈ 𝔻

n, X ∈ ℝ
m×n, 𝜇 ∈ (0, �̄�].

(3.11)x̂ = prox𝜏Φd (w) ∶= arg min
x∈ℝn

+

�
𝜏Φd(D(x)) +

1

2
‖x − w‖2

F

�

(3.12)x̂i = max{w̄i − 𝜏∕𝜈, 0}, i ∈ [n],

w̄i =

{
wi if di = 1,

wi +
𝜏

𝜈
if di = 2.
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Theorem  3.3 For given W ∈ ℝm×n and 𝜏 > 0 , let UD(w)VT be the singular value 
decomposition of W and x̂ = prox𝜏Φd (w) . Here d ∶= dW is defined as in (2.3). Then 
x̂1 ≥ x̂2 ≥ … ≥ x̂n ≥ 0 and X̂ = UD(x̂)VT is an optimal solution of the problem

Proof From w1 ≥ w2 ≥ … ≥ wn ≥ 0 , it is clear that d1 ≥ d2 ≥ … ≥ dn . Next, we 
will prove that x̂1 ≥ x̂2 ≥ … ≥ x̂n ≥ 0 . We split the proof into three cases.
Case 1. di = di+1 = 2 . By (3.12), it holds

Case 2. di = 2 and di+1 = 1 . By (3.12), it holds

Case 3. di = di+1 = 1 . By (3.12), it holds

Combining with all cases, the non-increasing of x̂i is asserted.
Invoking by [15, Proposition 2.1] with F(X) = �Φd(X), �(t) = t2∕2 , ‖ ⋅ ‖ = ‖ ⋅ ‖F 

and using the fact that x̂ is an optimal solution of prox�Φd (w) , it is concluded that 
X̂ = UD(x̂)VT is an optimal solution of (3.13).

To end this subsection, we introduce the first order approximation of F̃d
(⋅,𝜇) on 

a given matrix Z

with a constant 𝛾 > 0 . Then, the optimization problem minX Qd,� (X, Z,�) has a 
closed form, denoted by X̂ , which can be calculated by using Theorem  3.3 with 
� = ��−1� and W = Z − 𝛾−1𝜇∇f̃ (Z,𝜇).

3.2  SPG algorithm

In this subsection, a proximal gradient algorithm based on the smoothing method, 
denoted by SPG for simplicity, will be proposed to get a lifted stationary point of 
(1.5).

The following assumptions are needed to analyze the convergence of the pro-
posed SPG algorithm:

• (A1) Assumption 1 and Assumption 2 hold;
• (A2) f̃  is a smoothing function of f defined in Definition 3.1;
• (A3) the global minimum point of F  in (1.5) (or F

�0
 in (1.1)) is bounded.

(3.13)min
X

�
�Φd(X) +

1

2
‖X −W‖2

F

�
.

x̂i = wi ≥ wi+1 = x̂i+1 ≥ 0.

x̂i = wi ≥ max
{
wi+1 − 𝜏∕𝜈, 0

}
= x̂i+1 ≥ 0.

x̂i = max
{
wi − 𝜏∕𝜈, 0

}
≥ max

{
wi+1 − 𝜏∕𝜈, 0

}
= x̂i+1 ≥ 0.

(3.14)
Qd,𝛾 (X, Z,𝜇) = f̃ (Z,𝜇) + ⟨X − Z,∇f̃ (Z,𝜇)⟩ + 1

2
𝛾𝜇−1‖X − Z‖2

F
+ 𝜆Φd(X)
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Borrowing from Lf  in Assumption 1, � can be defined such that problems (1.1) is 
consistent with (1.5) in Theorem  2.5 and Proposition  2.6. Based upon the above 
assumptions, the SPG algorithm for solving (1.5) is outlined as Algorithm 1 here.

At each iteration, we adopt the proximal gradient algorithm to solve minX 
Qdk ,�k

(X,Xk,�k) for fixed �k, �k, and dk . At each iteration in Step 1, we choose �k 
independently. The smoothing parameter �k is updated in Step 3 by (3.18), where 
F̃
(
Xk+1,𝜇k

)
+ 𝜂𝜇k can be seen as loss function with monotone nonincreasing prop-

erty, which can be seen from Lemma 3.5. If the loss function decreases more than 
a given scale, then the smoothing parameter �k is still acceptable; otherwise, it is 
updated by (3.19).

For convenience, let

and ns
r
 be the rth smallest number in Ns . Clearly, Yl ∈

{
Xk

}
k∈Ns for all l. Then, we 

can update 
{
�k

}
 by

N
s =

{
k ∈ ℕ ∶ �k+1 ≠ �k

}
,
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which is helpful to show Lemma 3.6.

3.3  Convergence analysis

In this subsection, we will present the convergence analysis for the SPG algorithm.
Let 

{
Yl
}
 be the sequences generated by SPG algorithm. We first show some basic 

properties of the iterates 
{
Xk

}
 , 
{
Yl
}
 , 
{
�k
}
 and 

{
�k

}
 in Lemmas 3.4–3.6. Next, we 

show that any accumulating point of 
{
Yl
}
 is a lifted stationary point of (1.5), as 

stated in Theorem 3.7.

Lemma 3.4 In the SPG algorithm, {Xk} is well defined and 
{
𝛾k
}
⊆ [𝛾 , max{�̄� , 2𝜌L}].

Proof Clearly, (3.16) holds if and only if

From Definition 3.1-(v), (3.16) holds if �k ≥ 2L . Thus, �k in Step 2 is attainable by at 
most log�(2L∕�) + 1 times at each iteration. Hence, it is asserted that the SPG algo-
rithm is well-defined, and hence 𝛾k ≤ max{�̄� , 2𝜌L}, ∀k ∈ ℕ.

Lemma 3.5 For any k ∈ ℕ , we have

Furthermore, 
{
F̃
(
Xk+1,𝜇k

)
+ 𝜂𝜇k

}
 is nonincreasing.

Proof By (3.15), it follows

From the definition of Qdk ,�k

(
Xk+1,Xk,�k

)
 in (3.14), it can be rewritten as

Furthermore, we can write (3.16) as

Summing up (3.23) and (3.24), there holds

(3.21)�k = �ns
r
+1 =

�0(
ns
r
+ 1

)� , ∀ns
r
+ 1 ≤ k ≤ ns

r+1
,

f̃
(
X̂k+1,𝜇k

)
≤ f̃

(
Xk,𝜇k

)
+
⟨
∇f̃

(
Xk,𝜇k

)
, X̂k+1 − Xk

⟩
+

1

4
𝛾k𝜇

−1
k

‖‖‖X̂
k+1 − Xk‖‖‖

2

F
.

(3.22)F̃
(
Xk+1,𝜇k

)
≤ F̃

(
Xk,𝜇k

)
−

1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F
.

Qdk ,𝛾k

(
Xk+1,Xk,𝜇k

)
≤ Qdk ,𝛾k

(
Xk,Xk,𝜇k

)
= f̃

(
Xk,𝜇k

)
+ 𝜆Φdk

(
Xk

)
.

(3.23)
𝜆Φdk

(
Xk+1

)
≤𝜆Φdk (X) +

⟨
Xk − Xk+1,∇f̃

(
Xk,𝜇k

)⟩
−

1

2
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F
.

(3.24)
F̃

dk(
Xk+1,𝜇k

)
≤ f̃

(
Xk,𝜇k

)
+
⟨
Xk+1 − Xk,∇f̃

(
Xk,𝜇k

)⟩

+
1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F
+ 𝜆Φdk

(
Xk+1

)
.



530 Q. Yu, X. Zhang 

1 3

where the first “ = ” comes from the definition of F̃dk and the second “ = ” is due to 
Φdk

(
Xk

)
= Φ(Xk) . Furthermore, F̃dk(

Xk+1,𝜇k

)
≥ F̃

(
Xk+1,𝜇k

)
 from (3.10). There-

fore, (3.22) is arrived.
Since F̃(X,𝜇) = f̃ (X,𝜇) + 𝜆Φ(X) , it is clear that

where the last inequality comes from Definition 3.1 (iv). Together with (3.22), there 
holds

which implies the nonincreasing property of 
{
F̃
(
Xk+1,𝜇k

)
+ 𝜂𝜇k

}
.

Lemma 3.6 Suppose that {Yl} , together with {Xk,�k, �k} , is generated by the SPG 
algorithm. Then 

 (i) 
∞∑
k=0

�2
k
≤ Λ with Λ =

1

𝛼

(
F̃
(
X0,𝜇−1

)
+ 𝜂𝜇−1 −minF(X)

)
+

2𝜇2
0
𝜎

2𝜎−1
< ∞;

 (ii) lim
k→∞

�k = 0;
 (iii) {Yl} is an infinite sequence.

Proof (i) From (3.21), one has

where ns
r
 is the rth smallest element in Ns.

By (A3) and (3.9), we see that

where the equality follows from Theorem 2.5. When k ∉ N
s , (3.18) can be rewritten 

as

(3.25)

F̃
dk(

Xk+1,𝜇k

)
≤ f̃

(
Xk,𝜇k

)
+ 𝜆Φdk (X) −

1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F

= F̃
dk(

Xk,𝜇k

)
−

1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F

= F̃
(
Xk,𝜇k

)
−

1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F
,

F̃(X,𝜇k) − F̃(X,𝜇k−1) = f̃ (X,𝜇k) − f̃ (X,𝜇k−1) ≤ 𝜂
(
𝜇k−1 − 𝜇k

)
,

(3.26)
F̃
(
Xk+1,𝜇k

)
+ 𝜂𝜇k ≤ F̃

(
Xk,𝜇k

)
+ 𝜂𝜇k −

1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F

≤ F̃
(
Xk,𝜇k−1

)
+ 𝜂𝜇k−1 −

1

4
𝛾k𝜇

−1
k

‖‖‖X
k+1 − Xk‖‖‖

2

F
,

(3.27)
∑

k∈Ns

�2
k
=

∞∑

r=1

�2
0

(
ns
r
+ 1

)2� ≤

∞∑

k=1

�2
0

k2�
≤

2�2
0
�

2� − 1
,

(3.28)F̃
(
Xk+1,𝜇k

)
+ 𝜂𝜇k ≥ F

(
Xk+1

)
≥ minF(X) = minF

�0
(X) > −∞,

𝛼𝜇2
k
≤ F̃

(
Xk,𝜇k−1

)
+ 𝜂𝜇k−1 − F̃

(
Xk+1,𝜇k

)
− 𝜂𝜇k.
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Together with the nonincreasing property of 
{
F̃
(
Xk+1,𝜇k

)
+ 𝜂𝜇k

}
 and (3.28), we 

have that

Summing up (3.27) and (3.29), (i) is arrived here.
(ii) From (i), (ii) is obvious.
(iii) (iii) is clear from (ii).

Now we present the convergence of SPG algorithm, stated as follows.

Theorem 3.7 Any accumulation point of 
{
Yl
}
 generated by SPG algorithm is a lifted 

stationary point of (1.5).

Proof Suppose that Ȳ  is an accumulation point of any convergence subsequent {
Yli

}
li∈N

s . For convenience, denote Xki = Yli . Since (3.18) fails for ki , by rearranging 
(3.26), one has

Combining lim
i→∞

�ki
= 0 and 

{
𝛾ki

}
⊆ [𝛾 , max{�̄� , 2𝜌L}] , it follows

Considering Xki = X̂ki defined as in (3.15), the first-order optimality condition of 
(3.15) gives

From the fact that 
{
dki ∶ i ∈ ℕ

}
 is finite and lim

i→∞
Xki = Ȳ  , there exists a subsequence 

of 
{
ki
}
 , denoted as 

{
kij

}
 , and d̄ ∈ D(𝜎(X̄)) such that dkij = d̄, ∀j ∈ ℕ . By the defini-

tion of 𝜕Φd̄ and lim
j→∞

X
kij = Ȳ  , it gives

Letting kij → ∞ in (3.32), from Definition 3.1-(iii), (3.31) and (3.33), then there 
exist 𝜉 ∈ 𝜕f (Ȳ) and 𝜁 d̄ ∈ 𝜕Φd̄(Ȳ) such that

By d̄ ∈
∏n

i=1
D
�
𝜎i(Ȳ)

�
 and the definition of Φd̄ in (2.4), (3.34) indicates that Ȳ  is a 

lifted stationary point of (1.5).

(3.29)
∑

k∉Ns

𝜇2
k
≤

1

𝛼

(
F̃
(
X0,𝜇−1

)
+ 𝜂𝜇−1 −minF(X)

)
.

(3.30)4��2
ki−1

≥ �ki−1�
−1
ki−1

‖‖‖X
ki − Xki−1‖‖‖

2

F
.

(3.31)lim
i→∞

𝜇−1
ki−1

‖‖‖X
ki − Xki−1‖‖‖F = 0 and lim

i→∞
Xki−1 = lim

i→∞
Xki = Ȳ .

(3.32)
∇f̃

(
Xki−1,𝜇ki−1

)
+ 𝛾ki−1𝜇

−1
ki−1

(
Xki − Xki−1

)
+ 𝜆𝜁 ki−1 = 0,∀𝜁 ki−1 ∈ 𝜕Φdki−1

(
Xki

)
.

(3.33)
{
lim
j→∞

𝜁
kij ∶ 𝜁

kij ∈ 𝜕Φd
kij
(
X
kij
+1
)}

⊆ 𝜕Φd̄(Ȳ).

(3.34)𝜉 + 𝜆𝜁 d̄ = 0.
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Remark 3.8 Let X = diag(x) and Z = Diag(z) be diagonal matrices generated by x 
and z, respectively. Then Φd(X) and Qd,� (X, Z,�) equal to Φd(x) and Qd,� (x, z,�) , as 
defined in [1], which are convex on x for fixed d, z, � ,� , respectively. The convexity 
of Φd(x) and Qd,� (x, z,�) is essential to establish the global convergence and local 
convergence rate. However, Φd(X) and Qd,� (X, Z,�) on X are not convex, see Exam-
ple 2.7. So the global convergence and local convergence rate can not be established 
in a similar way in [1].

4  Numerical experiments

In this section we conduct numerical experiments to test the performance of 
the SPG method. In particular, we apply it to solve the problem (1.1) with 
f (X) = ‖PΩ(X −M)‖1 , that is,

We conduct extensive experiments to evaluate our method and then compare it with 
some existing methods, including FPCA [17], SVT [3] and VBMFL1 [28]. The plat-
form is Matlab R2014a under Windows 10 on a desktop of a 3.2GHz CPU and 8GB 
memory. We adopt the root-mean-square error (RMSE) as an evaluation metric

and the final performance of each simulation is evaluated by obtaining an ensemble 
average of the relative error with T independent Monte Carlo runs.

In the simulation, a typical two-component Gaussian mixture model (GMM) is 
used as the non-Gaussian noise model. The probability density function (PDF) of 
GMM is defined as

where N
(
0, �2

A

)
 represents the noise disturbance with variance �2

A
 , and N

(
0, �2

B

)
 

stands for outliers that occur occasionally with a large variance �2
B
 . The parameter c 

controls the occurrence probability of outliers.

4.1  Random matrix completion

In this subsection, we aim to recover a random matrix M ∈ ℝm×n of rank r from 
known entries 

{
Mij

}
(i,j)∈Ω

 . In detail, we first generate random matrices 
ML = unifrnd(− 0.1, 0.3,m, r) ∈ ℝm×r and MR = unifrnd(− 0.1, 0.3, n, r) ∈ ℝn×r , 
then let M = MLM

T
R
 . We sample a subset with sampling ratio SR uniformly at ran-

dom, where SR = |Ω|∕(mn) . In our experiment, we set m = n . The GMM noise 
are set as �2

A
= 0.0001, �2

B
= 0.1 and c = 0.2 . The rank r is set to be 30 and the 

(4.35)min
X∈ℝm×n

Fl0
(X) ∶= ‖PΩ(X −M)‖1 + � ⋅ rank(X).

RMSE ∶=

�
‖X∗ −M‖2

F

mn
,

pv(i) = (1 − c)N
(
0, �2

A

)
+ cN

(
0, �2

B

)
,
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sampling ratio SR is set to be 0.8. For each simulation, an average relative error is 
obtained via 100 Monte Carlo runs with different realizations of M, Ω and noise.

The performance is firstly compared for different �0 under different �k in step 3 
of SPG algorithm. For m = 150 , � = 0.8 and � = +∞ , the results for different �0 
are reported in Fig. 2, where �0 increases from 2 to 20 with increment 2. Figure 2 
shows that the larger �0 becomes, the smaller the value of RMSE with the more 
running time. It can also be observed that SPG algorithm of � = 0.8 performs bet-
ter than that of � = +∞ . For � = 0.8 , it is necessary to reduce �k when (3.18) is 
not satisfied, while �k reduces for � = +∞ . We can assert that the strategy of �k in 
step 3 of SPG algorithm works well.

Secondly, we report the performance of the algorithms for different sizes of 
completion problems in Fig. 3. The size of the square matrix increases from 100 
to 200 with increment 10. Figure 3 shows the curves of the average RMSE and 
running times in terms of different matrix sizes m. As can be seen from Fig. 3, the 
SPG algorithm achieves comparably lower average RMSE than the other algo-
rithms, while FPCA and SVT algorithms based on l2 norm have higher RMSE 
values. Moreover, as the size of the matrix increases, the average RMSE values 
decrease for all algorithms. With the increase of matrix size, the average running 

Fig. 2  Curves of RMSE and average running times with different �
0

Fig. 3  Curves of RMSE and average running times with different matrix size m 
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time of all algorithms increases gradually, while the average running time of SPG 
algorithm is the least except FPCA. The average running time of VBMFL1 algo-
rithm based on l1 norm increases much faster than another three algorithms. In 
summary, SPG algorithm performs best among the four algorithms.

4.2  Image inpainting

In this subsection, the performance of the algorithms is compared for some image 
inpainting tasks with non-Gaussian noise. Note that grayscale images can be 
expressed as matrix. When the matrix data is of low-rank, or numerical low-rank, 
the image inpainting problem can be modeled as matrix completion problem. To 
evaluate the algorithm performances under non-Gaussian noise, a mixture of Gauss-
ian is selected for the noise model. We adopt the peak signal-to-noise ratio (PSNR) 
as an evaluation metric, which is defined by

A higher PSNR represents better recovery performance.
We use the USC-SIPI image database1 to evaluate our method for image inpaint-

ing. In the test, we randomly select 6 images from this database for testing and the 
images are normalized in the range [0, 1] . In Fig.  4, we consider the case where 
entries are missing at random by sampling ratio SR = 0.9 . The GMM noise is set 
at �2

A
= 0.001, �2

B
= 0.1, c = 0.1 . From Fig. 4, we can see that the image restored by 

FPCA and SVT algorithm with l2 norm is very blurred, while the image restored 

PSNR ∶= 10 log10

�
mn

‖X∗ −M‖2
F

�
.

Original Observed SPG VBMFL1 FPCA SVT(A) (B) (C) (D) (E) (F)

Fig. 4  Image inpainting sample of image under a mixture of Gaussian noise

1 http:// sipi. usc. edu/ datab ase/.

http://sipi.usc.edu/database/
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by SPG and VBMFL1 algorithm with l1 norm is relatively clear, indicating that the 
recovery effect of l1 norm for non-Gaussian noise is better than that of l2 norm. In 
the image restored by VBMFL1 algorithm, the recovery effect is not good for those 
isolated small pixels, especially in “Chart". It may be that these abnormal small pix-
els are treated as outliers. The image restored by SPG algorithm performs well in 
all aspects. At the same time, in order to compare the recovery effect of the four 
algorithms more clearly, we give the PSNR and running time of the four algorithms 
in Table 1. It can be seen from the table that the VBMFL1 algorithm based on l1 
norm has higher PSNR values than the FPCA and SVT algorithms based on l2 norm, 
while the running time is much longer. SPG algorithm has the highest PSNR value 
and the least running time. We can assert that SPG is the best of the four algorithms. 

In Fig. 5 and Table 2, we consider the case where entries are missing at random 
by sampling ratio SR = 0.7 , and Gaussian noise with variance 0.0001 is added to the 

Table 1  Image inpainting 
performance comparison under 
a mixture of Gaussian noise: 
PSNR and running times

Bold values indicate the results obtained by SPG

 Method Image

Chart House Splash

PSNR Time PSNR Time PSNR Time

SPG 28.07 1.53 30.03 2.02 31.69 6.61
VBMFL1 20.70 30.22 28.09 27.82 30.88 96.98
FPCA 16.74 2.50 20.62 2.63 23.81 12.08
SVT 10.95 5.40 17.21 4.52 13.80 9.52

(A) Original (B) Observed (C) SPG (D) VBMFL1 (E) FPCA (F) SVT

Fig. 5  Image inpainting sample of image under Gaussian noise
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observed pixels. It can be seen from Fig. 5 and Table 2 that the recovery effect of 
the algorithm based on l1 norm is similar to that of the algorithm based on l2 norm 
in Gaussian noise, and the running time is relatively long. However, SPG algorithm 
still has the highest PSNR value and the least running time. Therefore, no matter 
whether Gaussian noise or not, SPG algorithm performs best for image restoration.

4.3  MRI volume dataset

The resolution of the MRI volume dataset2 is of size 217 × 181 with 181 slices and 
we selected the 38th slice and the 88th slice for the experiment. We consider the 
case where entries are missing at random by sampling ratio SR = 0.9 . The GMM 
noise is set at �2

A
= 0.0001, �2

B
= 0.1, c = 0.01.

From Figs. 6 and 7, we can see that the effect of FPCA and SVT to restore images 
is very poor. Although the effect of VBMFL1 algorithm to restore images is better, 
the running time is relatively longer. Furthermore, the effect of restored image by 
SPG algorithm is the best one with the least running time. In summary, the SPG 
algorithm has the best recovery effect.

Table 2  Image inpainting 
performance comparison under 
Gaussian noise: PSNR and 
running times

Bold values indicate the results obtained by SPG

Method Image

Clock Tank Man

PSNR Time PSNR Time PSNR Time

SPG 30.15 1.32 32.07 7.38 30.15 7.18
VBMFL1 28.11 10.48 27.40 84.71 23.82 70.09
FPCA 24.06 2.25 26.09 12.36 22.79 11.39
SVT 28.80 14.18 26.93 23.54 25.85 35.79

Original Observed SPG VBMFL1 FPCA SVT(A) (B) (C) (D) (E) (F)

Fig. 6  Completion results of the MRI volume dataset

2 http:// graph ics. stanf ord. edu/ data/ volda ta/.

http://graphics.stanford.edu/data/voldata/
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