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TLRR model

Given an observed Hyperspectral image (HSI) X’ and a dictionary
A, the tensor low rank representation (TLRR) model for
hyperspectral anomaly detection (HAD) can be expressed as

; 1 —
min rank (£) + A[|Sl,, 5 st X =AxL+S. (1)

Model (1)
—>

HSlep o =202 X2, 115G 4,91 %
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@ Construction of dictionary
e SVD: TLRA-MSL?
o k-means clustering: GTVLRR3, SRTDaAW*
e RPCA: TLRSR®

@ Low rank approximation

o Nuclear norm: GTVLRR?, LRASR®
o Weighted nuclear norm: TLRSR®
o Truncated nuclear norm: PTA7

2He, Xu, et al. “Anomaly Detection for Hyperspectral Imagery via Tensor Low-Rank Approximation With
Multiple Subspace Learning.” IEEE Transactions on Geoscience and Remote Sensing (2023).

3Cheng, Tongkai, and Bin Wang. “Graph and total variation regularized low-rank representation for
hyperspectral anomaly detection.” IEEE Transactions on Geoscience and Remote Sensing 58.1 (2019): 391-406.

4Yang, Yixin, et al. “Hyperspectral anomaly detection through sparse representation with tensor
decomposition-based dictionary construction and adaptive weighting.” IEEE Access 8 (2020): 72121-72137.

5Wang, Minghua, et al. “Learning tensor low-rank representation for hyperspectral anomaly detection.” |IEEE
Transactions on Cybernetics 53.1 (2022): 679-691.

5Xu, Yang, et al. “Anomaly detection in hyperspectral images based on low-rank and sparse representation.”
IEEE Transactions on Geoscience and Remote Sensing 54.4 (2015): 1990-2000.

7Li, Lu, et al. “Prior-based tensor approximation for anomaly detection in hyperspectral imagery.” |IEEE
Transactions on Neural Networks and Learning Systems 33.3 (2020): 1037-1050.

5/39



Our model
90000000000

Contents

© Our model

6/39



Our model
(o] lele]elelelelele]e]

Dictionary constraint

Different from model (1) which simply adopts a pre-built dictionary
A, we perform dictionary construction and anomaly detection
simultaneously to learn a more comprehensive dictionary for

background reconstruction.
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Figure 1: Singular values of dictionary tensor A and gradient tensor
VA, u € [3].
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We exploit this property to model the dictionary tensors using the
gradient tensors, and it can be modeled as follows:
3

i v, Tank U A k A
AI,HLI?S ;a rank (V,A) + A rank (£) + 2||5||ZR0

st. X =AxL+S,

()

where V1A, VoA, V3 A denote the first-order forward
finite-difference operators along the vertical, horizontal, and
spectral directions, respectively.
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Generalized nonconvex approximation

Different from most existing nonconvex HAD methods that only
use nonconvex approximation for low rank, we apply it to both low
rank and sparsity. Moreover, we pursue a general surrogate for
approximating low rank and sparsity, i.e.,

n3 min{ni,na}
o= 3 oo (X)),

niy n2

EIPEED S WA BIBE

i=1 j=1

where ¢(-) : Ry — Ry is a function.
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By replacing the rank (-) and |||, , with (3), our GNBRL model
is formulated as: 7

3
s ;O&u [VuAll, + AL, + A2 IS o, @

st. X =AxL+S.

Assumption 3.1

The function ¢ (-) : Ry — R satisfies: 1 is continuous,
nondecreasing and concave with v (0) = 0.
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EIE 1

Most functions satisfy Assumption 3.1. We list five of them as
follows. Here we only consider the case x > 0.

(1) L1: () = x;
(2) Lp: ¥ (x) = 2P, p € (0,1),

2
(3) MCP: pMCP(z) = § 7 7 207 T =F=D iy o 5 0
9 x>«

(4) Logarithm: ¢'°8(z) = log(% + 1) with 6 > 0;
(5) Capped folded functions:

o Capped L1: 1% (1) = min {1, %}

o Capped Lp : 1“*'P (z) = min {1, %} ,p€(0,1);

o Capped MCP:

pCPMCP (1) = min {1, V(22aa_y) MCP(JU)} , O<v<a;

o Capped Logarithm: 1)©?PL°8 (1) = min {1, ﬁ(v)qﬁ“’g(x)} :
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CF2 framework for GNBRL

To improve the detection accuracy of complex objects in a
cluttered scene, we develop a coarse to fine two-stage (CF2)
framework for GNBRL (CF2-GNBRL).

1) Coarse Stage: In the coarse stage, a coarse anomaly Sis
obtained by applying the GNBRL model to the whole HSI.

2) Fine Stage: We first divide the whole HSI into N patches third
order sub-tensors according to BM3D. Then we apply the GNBRL

G2 SN
model to each sub-tensor to obtain Sp&tch,Spatch, . Spatch

Next, we divide S into N patches following the partitions employed

32 SN
in the current fine stage to obtain S atch’Spatch’ e Spatch
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Finally, we obtain §* by

ql H < Sl
*,1 - Spatch’ if gap Spatch"spatch <o
patch —

(5)

Gl ql Sl
S patch’ if gap Spatch78 atch >0

where p is a given parameter and

B

H patch ~— patch
gap (Spatciw Spatch) ‘ Sl
patch P
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Error bound of GNBRL

In the following, we present some properties of the nonconvex
function 1, which are essential for the error bound analysis.

Suppose that B € R™M*"2X"3 gnd § € R™M*"2X"3 are two arbitrary
tensors. Then, the following properties hold.
(1) [I1B—=Slly = 1Bl — ISl
(2) IB=Sllpw <Bllgp +ISlpw
F,1 F,1 F,1
(3) v (Bllp) < HBHW < HBllw 1, where
1Blly1 = 32521 22521 2ot ¥ (1Bijil)-
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Let (Eh,Su) be the pair of true low rank and sparse tensors, and
(A*, L*,S*) be an optimal solution to the optimization problem
(4). Assume that A* satisfies 1-RTEC(s), X = A* x LI + S,
HCun < [I£*][y := s, and Az > )\17‘19%},5 with r = min {ny,ny}.
Then we have

(o= 21,

o) s[5

v ST
ZF,I )\2 - )\17'791",3

where 19;/’,3 is a constant that depends on r, s, 1.
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HEIL 4
When (x) = xP, the average of the entries of the sparse

component S? is bounded by T' and the cardinality of the support
S is bounded by m. By properly choosing \i and \a, we have

< VamT.

=

That is, for very sparse anomaly tensors, as long as I’ is bounded,
then HSu - S*HF /M with M = ninans is rather small, indicating
good recovery.
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In real-world HSIs data, the entries in a spectral vector are
corrupted by Gaussian noise, so we convert (4) to the following
problem:

3
ity S IVl +Au Il 422 [S]gg, +05 (4.£.8). (1)

where f (A, £,S) = L |AxL+S - X|3.
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Now we develop an ELADMM algorithm to solve problem (7). By
introducing the auxiliary variable C,, = VA, u € [3], problem (7)
can be rewritten as:

3
A,ﬁ,gl;?u . Zozu [Cully + A1 L]y, + A2 HSHE?1 +Bf(AL,S),

u=1l y=1
st Cu=V.A uel3.
(8)
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The augmented Lagrangian function of (8) can be given by

LS, A\Cor 3T )
- 8
=3 (alealy + Vil -+ 2 vaa-cilt) )
u=1
A+ he Sl + B (AL.5).

where (3, for u € [3] are the penalty parameter, and 7, for u € [3]
are the Lagrange multipliers.
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Under the ADMM algorithm framework, we can alternatively
update each variable:

S € argming L (S, A%, CL, LY T BL)

AL € argmin, L (SHI,A, CL Lt 73,55) )
Citl e argming L (StH,AtH,Cu,Et; 7:,55) ,
L € argmin, L (S, AL CUHL LT E BL)
TE =7+ (Tt e i

where ¢ denotes the iteration number and p is a constant value
greater than 1.
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Although L (S, A, Cy, L; Ty, Bu) with respect to A is convex, there
is no closed-form solution. We update A by solving the following
sub-problem:

3 t
argmpn 3 (72 wud - + 2 i)
A (10)

)

+€8<vAf («‘it,ﬁ‘,S‘“),A—At> /ZA‘

‘A At

where f (A, L,8) = |[[AxL+S — X% I >1a(f), la(f)is a
Lipschitz constant of V 4 f (.A Lt SH‘l) with respect to A, and

Al is an extrapolated point.
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Algorithm 1: ELADMM method to solve GNBRL

Input: The tensor data X, parameters {au}izl, A, A2, B.
Initialize: A%, £°, 8%, {9, T2}, {59}
While not converge do
Step 1. Update St
Step 2. Let A' = A" + Wl (A — A1),
Step 3. Update A"
Step 4. Update CiHL.
Step 5. Let £! = L' + wl. (£t —L£th).
Step 6. Update £
Step 7. Update multipliers 7./ and penalty parameters
s
Let t:=t+ 1 and go to Step 1.
end while
Output: St A+l pi+l

3
u=1"
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Convergence analysis

Let {S*, A", CL, L, T} be a sequence generated by Algorithm 1.
Suppose that the sequence { A, L’t}zl is bound. Then any
accumulation point of the sequence {S*, A*,C!, L', T} is a
Karush-Kuhn-Tucker (KKT) point of the optimization problem (8).
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Hyperspectral data

(a) Airportl (b) Airport2 (c) Urban (d) Beach

Figure 2: Pseudo-color images and ground-truth maps of the four HSls
data sets.
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Performance of different nonconvex functions

AUC (%)
AUC (%)

AUC (%)

(a) Airportl (b) Airport2 (c) Urban (d) Beach

Figure 3: AUC values (%) and corresponding running times of GNBRL
with different nonconvex functions 1 for each data set.
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Effects of the dictionary constraint

Probability of detection

False alarm rate

(b) GNBRL (c) ROC curves

Figure 4: Detection maps and ROC curves obtained by TLRSR and
GNBRL for the “Airport2” data set, respectively.
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Effects of extrapolation strategy

g® g g . g
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Figure 5: AUC values (%) with respect to the iteration numbers for
LADMM and ELADMM.
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Parameters setting

(a) Airportl (b) Airport2

Figure 6: Surfaces of AUC values (%) with different A; and As.

30/39



Numerical experiments
00000080000
For simplicity, we set 8! = min {x/3’, 1e8}.
(a) Airportl (b) Airport2 (d) Beach

Figure 7: Surfaces of AUC values (%) with different 5° and x.
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Detection performance

LRASR LSMAD

TPCA TLRSR GNBRL CF2-GNBRL

Figure 8: Target detection results by different methods.
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ROC curves obtained by different methods for the four data sets.
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Table 1: Comparison of AUC values (%) and running time (s) of different
methods for the four data sets.

HSI Airportl Airport2 Urban Beach
Algorithm | AUC | Time | AUC | Time | AUC | Time | AUC | Time
RX 82.21| 0.42 |84.03| 0.41 |96.92| 0.41 |95.39| 0.04
RPCA [80.89| 8.00 |84.31| 7.44 | 96.58| 6.98 |95.99 | 1.95
LRASR |77.28|53.81|86.48|70.13|92.89 |47.51|95.65 [104.90
LSMAD [83.39| 9.54 |92.17| 8.60 | 96.05| 8.74 | 97.06 | 7.65
GTVLRR [90.04|171.47| 88.89 [227.16| 93.73 [229.16| 98.02 [378.60
PTA 73.30|13.50|90.95|20.96 | 82.57 | 24.89|90.61 | 29.11
TPCA |80.22|30.91|88.90|30.62|93.69(22.15|95.82 |21.71
TLRSR [90.56 | 3.44 |94.57| 3.63 [97.10| 3.58 |95.98 | 5.84
GNBRL |94.75| 1.60 [98.00| 1.50 {98.38| 1.91 |98.03| 4.01
CF2-GNBRL|96.84 | 27.14 (98.81 | 31.63 (98.98 | 31.4099.24 | 83.06
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Separability maps of different methods for the four data sets.
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Our work

@ We propose a GNBRL model that simultaneously learns the
dictionary and anomaly tensor in a unified framework, which
can enhance the quality of representation. By employing a
class of generalized nonconvex functions as the TNN and
l1-norm approximations, we can capture the low rank
structure of the background and the sparsity of the anomaly
more accurately.

@ We provide an error bounds of anomaly tensor recovered by
the GNBRL model. Moreover, we develop an extrapolated
linearized alternating direction method of multipliers
(ELADMM) algorithm to solve the GNBRL model, and the
convergence analysis is also given.
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e We propose a coarse to fine two-stage (CF2) framework for
GNBRL, which can greatly improve its performance by first
obtaining the coarse anomaly tensor and then refining the
anomaly tensor.
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Thanks for your attention!
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